高等数学12常系数非齐次线性微分方程.ppt
《高等数学12常系数非齐次线性微分方程.ppt》由会员分享,可在线阅读,更多相关《高等数学12常系数非齐次线性微分方程.ppt(34页珍藏版)》请在三一办公上搜索。
1、1,常系数非齐次线性微分方程,第九节,一、,二、,2,二阶常系数线性非齐次微分方程:,根据解的结构定理,其通解为,求特解的方法,根据 f(x)的特殊形式,的待定形式,代入原方程比较两端表达式以确定待定系数.,待定系数法,3,一、,为实数,设特解为,其中 为待定多项式,代入原方程,得,(1)若 不是特征方程的根,则取,从而得到特解,形式为,为 m 次多项式.,Q(x)为 m 次待定系数多项式,4,(2)若 是特征方程的单根,为m 次多项式,故特解形式为,(3)若 是特征方程的重根,是 m 次多项式,故特解形式为,小结,对方程,此结论可推广到高阶常系数线性微分方程.,即,即,当 是特征方程的 k
2、重根 时,可设,特解,5,例1.,的一个特解.,解:本题,而特征方程为,不是特征方程的根.,设所求特解为,代入方程:,比较系数,得,于是所求特解为,6,例2.,的通解.,解:本题,特征方程为,其根为,对应齐次方程的通解为,设非齐次方程特解为,比较系数,得,因此特解为,代入方程得,所求通解为,7,例3.求解定解问题,解:本题,特征方程为,其根为,设非齐次方程特解为,代入方程得,故,故对应齐次方程通解为,原方程通解为,由初始条件得,8,于是所求解为,解得,9,综上讨论,10,特别地,11,二、,12,第一步,利用欧拉公式将 f(x)变形,13,14,第二步 求如下两方程的特解,则 有特解:,为方程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 12 系数 非齐次 线性 微分方程
链接地址:https://www.31ppt.com/p-6404244.html