混凝土结构09挠度、裂缝宽度验算及延性和耐久性.ppt
《混凝土结构09挠度、裂缝宽度验算及延性和耐久性.ppt》由会员分享,可在线阅读,更多相关《混凝土结构09挠度、裂缝宽度验算及延性和耐久性.ppt(90页珍藏版)》请在三一办公上搜索。
1、第九章 变形和裂缝宽度的计算,第九章 钢筋砼构件的变形、裂缝宽度砼结构的耐久性,概 述,外观感觉,耐久性,心理承受:不安全感,振动噪声,对非结构构件的影响:门窗开关,隔墙开裂等,振动、变形过大,对其它结构构件的影响,适用性,承载能力极限状态,结构的功能,第九章 变形和裂缝宽度的计算,对于超过正常使用极限状态的情况,由于其对生命财产的危害性比超过承载力极限状态要小,因此相应的可靠度水平可比承载力极限状态低一些。正常使用极限状态的计算表达式为,,Sk:作用效应标准值,如挠度变形和裂缝宽度,应根据荷载标准值和材料强度标准值确定。以受弯构件为例,在荷载标准值产生的弯矩可表示为,Msk=CGGk+CQQ
2、k,由于活荷载达到其标准值Qk的作用时间较短,故Msk称为短期弯矩,其值约为弯矩设计值的50%70%。由于在荷载的长期作用下,构件的变形和裂缝宽度随时间增长,因此需要考虑长期荷载的影响,长期弯矩可表示为,Ml k=CGGk+yqCQQkyq为活荷载准永久值系数(quasi-permanent load),第九章 变形和裂缝宽度的计算,9.1 受弯构件的挠度验算一、变形限值 f f f为挠度变形限值。主要从以下几个方面考虑:1、保证结构的使用功能要求。结构构件产生过大的变形将影响甚至丧失其使用功能,如支承精密仪器设备的梁板结构挠度过大,将难以使仪器保持水平;屋面结构挠度过大会造成积水而产生渗漏;
3、吊车梁和桥梁的过大变形会妨碍吊车和车辆的正常运行等。2、防止对结构构件产生不良影响。如支承在砖墙上的梁端产生过大转角,将使支承面积减小、支承反力偏心增大,并会引起墙体开裂。3、防止对非结构构件产生不良影响。结构变形过大会使门窗等不能正常开关,也会导致隔墙、天花板的开裂或损坏。,第九章 变形和裂缝宽度的计算,4、保证使用者的感觉在可接受的程度之内。过大振动、变形会引起使用者的不适或不安全感。,第九章 变形和裂缝宽度的计算,二、钢筋混凝土梁抗弯刚度的特点,截面抗弯刚度EI 体现了截面抵抗弯曲变形的能力,同时也反映了截面弯矩与曲率之间的物理关系。对于弹性均质材料截面,EI为常数,M-f 关系为直线。
4、,第九章 变形和裂缝宽度的计算,刚度是反映力与变形之间的关系:,第九章 变形和裂缝宽度的计算,由于混凝土开裂、弹塑性应力-应变关系和钢筋屈服等影响,钢筋混凝土适筋梁的M-f 关系不再是直线,而是随弯矩增大,截面曲率呈曲线变化。,短期弯矩Msk一般处于第阶段,刚度计算需要研究构件带裂缝时的工作情况。该阶段裂缝基本等间距分布,钢筋和混凝土的应变分布具有以下特征:,第九章 变形和裂缝宽度的计算,第九章 变形和裂缝宽度的计算,三、刚度公式的建立材料力学中曲率与弯矩关系的推导,几何关系,物理关系,平衡关系,第九章 变形和裂缝宽度的计算,1、几何关系:,2、物理关系:,3、平衡关系:根据裂缝截面的应力分布
5、,第九章 变形和裂缝宽度的计算,3、平衡关系:根据裂缝截面的应力分布,第九章 变形和裂缝宽度的计算,第九章 变形和裂缝宽度的计算,四、参数h、z 和y1、开裂截面的内力臂系数h 试验和理论分析表明,在短期弯矩Msk=(0.50.7)Mu范围,裂缝截面的相对受压区高度x 变化很小,内力臂的变化也不大。对常用的混凝土强度和配筋情况,h 值在0.830.93之间波动。规范为简化计算,取h=0.87。2、受压区边缘混凝土平均应变综合系数z 根据试验实测受压边缘混凝土的压应变,可以得到系数z 的试验值。在短期弯矩Msk=(0.50.7)Mu范围,系数z 的变化很小,仅与配筋率有关。规范根据试验结果分析给
6、出,,受压翼缘加强系数,第九章 变形和裂缝宽度的计算,第九章 变形和裂缝宽度的计算,3、钢筋应变不均匀系数y,rte为以有效受拉混凝土截面面积计算的受拉钢筋配筋率。Ate为有效受拉混凝土截面面积,对受弯构件取,当y 1.0时,取y=1.0;对直接承受重复荷载作用的构件,取y=1.0。,第九章 变形和裂缝宽度的计算,在短期弯矩Msk=(0.50.7)Mu范围,三个参数h、z 和y 中,h 和z 为常数,而y 随弯矩增长而增大。该参数反映了裂缝间混凝土参与受拉工作的情况,随着弯矩增加,由于裂缝间粘结力的逐渐破坏,混凝土参与受拉的程度减小,平均应变增大,y 逐渐趋于1.0,抗弯刚度逐渐降低。,第九章
7、 变形和裂缝宽度的计算,五、长期荷载作用下的抗弯刚度 在长期荷载作用下,由于混凝土的徐变,会使梁的挠度随时间增长。此外,钢筋与混凝土间粘结滑移徐变、混凝土收缩等也会导致梁的挠度增大。根据长期试验观测结果,长期挠度与短期挠度的比值q 可按下式计算:,长期抗弯刚度,第九章 变形和裂缝宽度的计算,六、受弯构件的挠度变形验算 由于弯矩沿梁长的变化的,抗弯刚度沿梁长也是变化的。但按变刚度梁来计算挠度变形很麻烦。规范为简化起见,取同号弯矩区段的最大弯矩截面处的最小刚度Bmin,按等刚度梁来计算。这样挠度的简化计算结果比按变刚度梁的理论值略偏大。但靠近支座处的曲率误差对梁的最大挠度影响很小,且挠度计算仅考虑
8、弯曲变形的影响,实际上还存在一些剪切变形,因此按最小刚度Bmin计算的结果与实测结果的误差很小。,“最小刚度刚度原则”,第九章 变形和裂缝宽度的计算,9.2 裂缝宽度计算荷载引起的裂缝宽度一、裂缝的出现、分布与开展,第九章 变形和裂缝宽度的计算,在裂缝出现前,混凝土和钢筋的应变沿构件的长度基本上是均匀分布的。当混凝土的拉应力达到抗拉强度时,首先会在构件最薄弱截面位置出现第一条(批)裂缝。裂缝出现瞬间,裂缝截面位置的混凝土退出受拉工作,应力为零,而钢筋拉应力应力产生突增Dss=ft/r,配筋率越小,Dss就越大。由于钢筋与混凝土之间存在粘结,随着距裂缝截面距离的增加,混凝土中又重新建立起拉应力s
9、c,而钢筋的拉应力则随距裂缝截面距离的增加而减小。当距裂缝截面有足够的长度 l 时,混凝土拉应力sc增大到ft,此时将出现新的裂缝。,第九章 变形和裂缝宽度的计算,如果两条裂缝的间距小于2 l,则由于粘结应力传递长度不够,混凝土拉应力不可能达到ft,因此将不会出现新的裂缝,裂缝的间距最终将稳定在(l 2 l)之间,平均间距可取1.5 l。从第一条(批)裂缝出现到裂缝全部出齐为裂缝出现阶段,该阶段的荷载增量并不大,主要取决于混凝土强度的离散程度。裂缝间距的计算公式即是以该阶段的受力分析建立的。裂缝出齐后,随着荷载的继续增加,裂缝宽度不断开展。裂缝的开展是由于混凝土的回缩,钢筋不断伸长,导致钢筋与
10、混凝土之间产生变形差,这是裂缝宽度计算的依据。由于混凝土材料的不均匀性,裂缝的出现、分布和开展具有很大的离散性,因此裂缝间距和宽度也是不均匀的。但大量的试验统计资料分析表明,裂缝间距和宽度的平均值具有一定规律性,是钢筋与混凝土之间粘结受力机理的反映。,第九章 变形和裂缝宽度的计算,二、裂缝间距,第九章 变形和裂缝宽度的计算,二、裂缝间距,第九章 变形和裂缝宽度的计算,上式表明,当配筋率r 相同时,钢筋直径越细,裂缝间距越小,裂缝宽度也越小,也即裂缝的分布和开展会密而细,这是控制裂缝宽度的一个重要原则。但上式中,当d/r 趋于零时,裂缝间距趋于零,这并不符合实际情况。试验表明,当d/r 很大时,
11、裂缝间距趋近于某个常数。该数值与保护层c 和钢筋净间距有关,根据试验分析,对上式修正如下:,第九章 变形和裂缝宽度的计算,对于受弯构件,可将受拉区近似作为一轴心受拉构件,根据粘结力的有效影响范围,取有效受拉面积Ate=0.5bh+(bf-b)hf,因此将式中配筋率r 的用以下受拉区有效配筋率替换后,即可用于受弯构件,采用rte 后,裂缝间距可统一表示为:,第九章 变形和裂缝宽度的计算,根据试验资料统计分析,并考虑受力特征的影响,对于常用的带肋钢筋,规范给出的平均裂缝间距lm的计算公式为:,受弯构件,轴心受拉构件,c最外层纵向受拉钢筋外边缘到受拉区底边的距离(mm),当c20mm时,取c=20m
12、m;d钢筋直径(mm),当用不同直径的钢筋时,d改用换算直径4As/u,u为纵向钢筋的总周长。,第九章 变形和裂缝宽度的计算,三、裂缝宽度,平均裂缝宽度,第九章 变形和裂缝宽度的计算,钢筋应力不均匀系数,由于钢筋与混凝土间存在粘结应力,随着距裂缝截面距离的增加,裂缝间混凝土逐渐参与受拉工作,钢筋应力逐渐减小,因此钢筋应力沿纵向的分布是不均匀的。裂缝截面处钢筋应力最大,裂缝中间钢筋应力最小,其差值反映了混凝土参与受拉工作的大小。,钢筋应力不均匀系数y 是反映裂缝间混凝土参加受拉工作程度的影响系数,第九章 变形和裂缝宽度的计算,第九章 变形和裂缝宽度的计算,当y 1.0时,取y=1.0;对直接承受
13、重复荷载作用的构件,取y=1.0。,第九章 变形和裂缝宽度的计算,近似取hc/h=0.67,h/h0=1.1,,第九章 变形和裂缝宽度的计算,最大裂缝宽度,实测表明,裂缝宽度具有很大的离散性。取实测裂缝宽度wt与上述计算的平均裂缝宽度wm的比值为t。大量裂缝量测结果统计表明,t 的概率密度分布基本为正态。取超越概率为5%的最大裂缝宽度可由下式求得:,式中d 为裂缝宽度变异系数,对受弯构件,试验统计得d=0.4,故取裂缝扩大系数t=1.66。对于轴心受拉和偏心受拉构件,由试验结果统计得最大裂缝宽度的扩大系数为t=1.9。,第九章 变形和裂缝宽度的计算,长期荷载的影响:由于混凝土的滑移徐变和拉应力
14、的松弛,会导致裂缝间混凝土不断退出受拉工作,钢筋平均应变增大,使裂缝随时间推移逐渐增大。混凝土的收缩也使裂缝间混凝土的长度缩短,也引起裂缝随时间推移不断增大。荷载的变动,环境温度的变化,都会使钢筋与混凝土之间的粘结受到削弱,也将导致裂缝宽度不断增大。根据长期观测结果,长期荷载下裂缝的扩大系数为t l=1.5。,第九章 变形和裂缝宽度的计算,轴心受拉构件acr=1.51.90.851.1=2.7,受弯构件acr=1.51.660.85=2.1,第九章 变形和裂缝宽度的计算,9.5 钢筋有效约束区与裂缝宽度,第九章 变形和裂缝宽度的计算,第九章 变形和裂缝宽度的计算,9.3 产生裂缝的其他原因 混
15、凝土结构中存在拉应力是产生裂缝的必要条件。除荷载作用外,结构的不均匀沉降、收缩、温度变化,以及在混凝土凝结、硬化阶段等都会引起拉应力,从而产生裂缝。结构中主拉应力达到混凝土(当时)的抗拉强度时,并不立即产生裂缝,而是当拉应变达到极限拉应变etu时才出现裂缝。硬化后的混凝土极限拉应变etu约为15010-6,即10m长的构件,产生1.5mm的很小受拉变形即会产生裂缝。由于混凝土材料的不均匀性,裂缝首先在强度最小的位置发生。裂缝发生前瞬间的应变分布会产生应变集中。不同龄期的混凝土,其裂缝断面状况有较大差别。龄期很短的混凝土,裂缝断面较为光滑,两裂缝不能完全闭合。而充分硬化后的混凝土,裂缝断面则呈不
16、规则较为锋锐状态,两断面可以闭合。,第九章 变形和裂缝宽度的计算,第九章 变形和裂缝宽度的计算,一、材料原因,水泥异常凝结引起的裂缝,受风化的水泥,其品质很不安定。混凝土浇筑后达到一定强度前,在凝结硬化阶段会产生如图所示的短小的不规则裂缝。随着水泥品质的改善,这种裂缝目前较少见到。,1、水泥方面,第九章 变形和裂缝宽度的计算,水泥水化热,水泥用量在300kg/m3左右时,温度上升为3040左右。,第九章 变形和裂缝宽度的计算,在实际结构中,内部因水化热产生蓄热的同时,构件表面还产生放热,使得构件温度经上升后再下降。,第九章 变形和裂缝宽度的计算,构件的最小尺寸大于800mm时,通常可认为是大体
17、积混凝土。对于大体积混凝土,内部温度较大,构件外周温度较低,内外温差很大,引起内外混凝土膨胀变形差异。内部混凝土膨胀受到外部混凝土的变形约束,而使构件表面产生裂缝。这种裂缝在构件表面通常呈直交状况。,第九章 变形和裂缝宽度的计算,大型构件与小尺寸构件共同组成的结构(如基础梁与薄墙板、大尺寸梁与薄楼板等),以及梁柱框架结构中均可能因温差的影响产生裂缝。,第九章 变形和裂缝宽度的计算,2、骨料方面,第九章 变形和裂缝宽度的计算,混凝土下沉和泌水,混凝土浇筑后,在凝结过程中会产生下沉和泌水,下沉量约为浇筑高度的1%。当下沉受到钢筋或周围混凝土的约束也会产生裂缝。,第九章 变形和裂缝宽度的计算,3、施
18、工原因,(a)材料混合不均匀,(b)长时间搅拌,(c)快速浇筑,(d)先后浇筑时差过长,混合材料不均匀:由于搅拌不均匀,材料的膨胀性和收缩的差异,引起局部的一些裂缝。长时间搅拌:混凝土运输时间过长,长时间搅拌突然停止后很快硬化产生的异常凝结,引起网状裂缝。,第九章 变形和裂缝宽度的计算,3、施工原因,(a)材料混合不均匀,(b)长时间搅拌,(c)快速浇筑,(d)先后浇筑时差过长,浇筑速度过快:当构件高度较大,如一次快速浇筑混凝土,因下部混凝土尚未充分硬化,产生下沉,引起裂缝。交接缝:浇筑先后时差过长,先浇筑的混凝土已硬化,导致交接缝混凝土不连续,这是结构产生裂缝的起始位置,将成为结构承载力和耐
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 混凝土结构 09 挠度 裂缝 宽度 验算 延性 耐久性
链接地址:https://www.31ppt.com/p-6389404.html