混凝土结构第四版第05章 受压构件的截面承载力.ppt
《混凝土结构第四版第05章 受压构件的截面承载力.ppt》由会员分享,可在线阅读,更多相关《混凝土结构第四版第05章 受压构件的截面承载力.ppt(121页珍藏版)》请在三一办公上搜索。
1、第5章 受压构件的截面承载力,受压构件(柱)往往在结构中具有重要作用,一旦产生破坏,往往导致整个结构的损坏,甚至倒塌。,轴心受压构件,轴心受压构件,箍筋的作用(1)与纵筋形成骨架,便于施工;(2)防止纵筋的压屈;(3)对核心混凝土形成约束,提高混凝土的抗压强度,增加构件的延性。,5.1 受压构件一般构造要求,截面型式及尺寸 轴心受压:一般采用方形、矩形、圆形和 正多边形 偏心受压构件:一般采用矩形、工字形、T形和环形,材料强度要求 混凝土:C25 C30 C35 C40 等 钢筋:纵筋:HRB335级、HRB400级和 RRB400级 箍筋:HPB235级、HRB335级 也可采用HRB400
2、级,纵筋 全部纵筋配筋率不应小于0.6%;不宜大于5%一侧钢筋配筋率不应小于0.2%直径不宜小于12mm,常用1632mm,宜用粗钢筋,纵筋净距:不应小于50mm;预制柱,不应小于30mm和1.5d(d为钢筋的最大直径)纵筋中距不宜大于300mm。纵筋的连接接头:(宜设置在受力较小处)可采用机械连接接头、焊接接头和搭接接头 对于直径大于28mm的受拉钢筋和直径大于32mm的受压钢筋,不宜采用绑扎的搭接接头。,箍筋,箍筋形式:封闭式 箍筋间距:在绑扎骨架中不应大于15d;在焊接骨 架中则不应大于20d(d为纵筋最小直 径),且不应大于400mm,也不大于 构件横截面的短边尺寸 箍筋直径:不应小于
3、 d4(d为纵筋最大直径),且 不应小于 6mm。当纵筋配筋率超过 3时,箍筋直径不应小于8mm,其间距不应大于10d(d为纵筋最小直径),且不应大于200mm。当截面短边不大于400mm,且纵筋不多于四根时,可不设置复合箍筋;当截面短边大于400mm且纵筋多于3根时,应设置复合箍筋。,箍筋的直径:不宜小于搭接钢筋直径的0.25倍;箍筋间距:当搭接钢筋为受拉时,不应大于5d,且不应大于100mm;当搭接钢筋为受压时,不应大于10d,且不应大于 200mm;(d为受力钢筋中的最小直径)当搭接的受压钢筋直径大于25mm时,应在搭接接头两个端面外100mm范围 内各设置两根箍筋。,在纵筋搭接长度范围
4、内:,截面形状复杂的构件,不可采用具有内折角的箍筋,柱钢筋图,电渣压力焊,保护层垫块,箍筋加密,机械连接,机械连接,试验研究,第一阶段:加载至钢筋屈服,第二阶段:钢筋屈服至混凝土压碎,轴心受压构件的破坏特征 按照长细比 l 的大小,轴心受压柱可分为短柱和长柱两类。对方形和矩形柱,当 l 8 时属于短柱,否则为长柱。其中l为柱的计算长度,为矩形截面的短边尺寸。1轴心受压短柱的破坏特征(1)当轴向力较小时,构件的压缩变形主要为弹性变形,轴向力在截面内产生的压应力由混凝土合钢筋共同承担。,点击播放视频,(2)随着荷载的增大,构件变形迅速增大,此时混凝土塑性变形增加,弹性模量降低,应力增加缓慢,而钢筋
5、应力的增加则越来越快。在临近破坏时,柱子表面出现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏。破坏时混凝土的应力达到棱柱体抗压强度。,当短柱破坏时,混凝土达到极限压应变=0.002,相应的纵向钢筋应力值=Es=21050.002=400N/mm2.因此,当纵筋为高强度钢筋时,构件破坏时纵筋可能达不到屈服强度。显然,在受压构件内配置高强度的钢筋不能充分发挥其作用,这是不经济的。,(1)初始偏心距导致附加弯矩,附加弯矩产生的水平挠度又加大了初始偏心距;较大的初始偏心距将导致承载能力的降低。破坏时首先在凹边出现纵向裂缝,接着混凝土被压碎,纵向钢筋被压
6、弯向外凸出,侧向挠度急速发展,最终柱子失去平衡并将凸边混凝土拉裂而破坏。(2)长细比较大时,可能发生“失稳破坏”。,2轴心受压长柱的破坏特征,点击播放视频,由上述试验可知,在同等条件下,即截面相同,配筋相同,材料相同的条件下,长柱承载力低于短柱承载力。在确定轴心受压构件承截力计算公式时,规范采用构件的稳定系数 来表示长柱承截力降低的程度。长细比l0/b越大,值越小,当l0/b 8时,=1。构件的计算长度l0与构件两端支承情况有关,对于一般的多层房屋的框架柱,梁柱为刚接的框架各层柱段。现浇楼盖:底层柱l0 1.0H;其余各层柱段l0 1.25H。装配式楼盖:底层柱l0 1.25H;其余各层柱段l
7、0 1.5H。,6.1 轴心受压构件的承载力计算,一、普通钢箍柱,轴心受压短柱,轴心受压长柱,稳定系数,稳定系数j 主要与柱的长细比l0/b有关,可靠度调整系数 0.9是考虑初始偏心的影响,以及主要承受恒载作用的轴心受压柱的可靠性。,6.1 轴心受压构件的承载力计算,表5-1,(2)验算配筋率,(3)确定柱截面承载力,=0.90.895(11.9300300+3001256),=1166.2103N=1166.2kNN=800kN,此柱截面安全。,【例5.2】已知某多层现浇钢筋混凝土框架结构,首层中柱按轴心受压构件计算。该柱轴向压力设计值 N=1400kN,计算长度l0=5m,纵向钢筋采用HR
8、B335级,混凝土强度等级为C30。求该柱截面尺寸及纵筋截面面积。,【解】fc=14.3N/mm2,fy=300N/mm2,查表6-1得=0.849,(3)计算钢筋截面面积As,(4)验算配筋率,满足最小配筋率要求,且勿需重算。,纵筋选用4 25(As=1964mm2),箍筋配置8300,如图。,6.1 轴心受压构件的承载力计算,二、螺旋箍筋柱,6.1 轴心受压构件的承载力计算,混凝土圆柱体三向受压状态的纵向抗压强度,6.1 轴心受压构件的承载力计算,达到极限状态时(保护层已剥落,不考虑),6.1 轴心受压构件的承载力计算,达到极限状态时(保护层已剥落,不考虑),6.1 轴心受压构件的承载力计
9、算,6.1 轴心受压构件的承载力计算,采用螺旋箍筋可有效提高柱的轴心受压承载力。如螺旋箍筋配置过多,极限承载力提高过大,则会在远未达到极限承载力之前保护层产生剥落,从而影响正常使用。规范规定:按螺旋箍筋计算的承载力不应大于按普通箍筋柱受压承载力的50%。对长细比过大柱,由于纵向弯曲变形较大,截面不是全部受压,螺旋箍筋的约束作用得不到有效发挥。规范规定:对长细比l0/d大于12的柱不考虑螺旋箍筋的约束作用。螺旋箍筋的约束效果与其截面面积Ass1和间距s有关,为保证有一定约束效果,规范规定:螺旋箍筋的换算面积Ass0不得小于全部纵筋As 面积的25%螺旋箍筋的间距s不应大于dcor/5,且不大于8
10、0mm,同时为方便施工,s也不应小于40mm。,6.1 轴心受压构件的承载力计算,采用螺旋箍筋可有效提高柱的轴心受压承载力。如螺旋箍筋配置过多,极限承载力提高过大,则会在远未达到极限承载力之前保护层产生剥落,从而影响正常使用。规范规定:,5.3 压力和弯矩共同作用下的截面受力性能,压弯构件 偏心受压构件,偏心距e0=0时?当e0时,即N=0,?偏心受压构件的受力性能和破坏形态界于轴心受压构件和受弯构件。,一、破坏特征,偏心受压构件的破坏形态与偏心距e0和纵向钢筋配筋率有关1、受拉破坏 tensile failure,M较大,N较小,偏心距e0较大,As配筋合适,一、破坏特征,1、受拉破坏 te
11、nsile failure,截面受拉侧混凝土较早出现裂缝,As的应力随荷载增加发展较快,首先达到屈服。此后,裂缝迅速开展,受压区高度减小 最后受压侧钢筋As 受压屈服,压区混凝土压碎而达到破坏.这种破坏具有明显预兆,变形能力较大,破坏特征与配有受压钢筋的适筋梁相似,承载力主要取决于受拉侧钢筋。形成这种破坏的条件是:偏心距e0较大,且受拉侧纵向钢筋配筋率合适,通常称为大偏心受压。,受拉破坏时的截面应力和受拉破坏形态(a)截面应力(b)受拉破坏形态,2、受压破坏compressive failure产生受压破坏的条件有两种情况:当相对偏心距e0/h0较小,或虽然相对偏心距e0/h0较大,但受拉侧纵
12、向钢筋配置较多时,As太多,截面受压侧混凝土和钢筋的受力较大 而受拉侧钢筋应力较小 当相对偏心距e0/h0很小时,受拉侧还可能出现受压情况。截面最后是由于受压区混凝土首先压碎而达到破坏 承载力主要取决于压区混凝土和受压侧钢筋,破坏时受压区高度较大,受拉侧钢筋未达到受拉屈服,破坏具有脆性质.,2、受压破坏compressive failure产生受压破坏的条件有两种情况:当相对偏心距e0/h0较小,或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时,第二种情况类似超筋梁,是配筋不当引起的,设计中应避免因此受压破坏一般为偏心距较小的情况,故常称为小偏心受压.,2、受压破坏compressi
13、ve failure产生受压破坏的条件有两种情况:当相对偏心距e0/h0较小,或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时,受压破坏时的截面应力和受压破坏形态(a)、(b)截面应力(c)受压破坏形态,二、正截面承载力计算 偏心受压正截面受力分析方法与受弯情况是相同的,即仍采用以平截面假定为基础的计算理论 根据混凝土和钢筋的应力-应变关系,即可分析截面在压力和弯矩共同作用下受力全过程 对于正截面承载力的计算,同样可按受弯情况,对受压区混凝土采用等效矩形应力图 等效矩形应力图的强度为a fc,等效矩形应力图的高度与中和轴高度的比值为b,受拉破坏和受压破坏的界限 即受拉钢筋屈服与受压区
14、混凝土边缘极限压应变ecu同时达到 与适筋梁和超筋梁的界限情况类似。因此,相对界限受压区高度仍为,,当x xb时,当x xb时,受拉破坏(大偏心受压),受压破坏(小偏心受压),小偏心受压时,受拉侧钢筋应力ss由平截面假定可得,小偏心受压时,受拉侧钢筋应力ss,为避免采用上式出现 x 的三次方程,考虑:当x=xb,ss=fy;,考虑:当x=xb,ss=fy;,当x=b,ss=0,小偏心受压时,受拉侧钢筋应力ss,为避免采用上式出现 x 的三次方程,5.4 附加偏心距和偏心距增大系数,由于施工误差、计算偏差及材料的不均匀等原因,实际工程中不存在理想的轴心受压构件。为考虑这些因素的不利影响,引入附加
15、偏心距ea(additional eccentricity),即在正截面压弯承载力计算中,偏心距取计算偏心距e0=M/N与附加偏心距ea之和,称为初始偏心距ei(initial eccentricity),,参考以往工程经验和国外规范,附加偏心距ea取20mm与h/30 两者中的较大值,此处h是指偏心方向的截面尺寸。,一、附加偏心距,二、偏心距增大系数,由于侧向挠曲变形,轴向力将产生二阶效应,引起附加弯矩 对于长细比较大的构件,二阶效应引起附加弯矩不能忽略。图示典型偏心受压柱,跨中侧向挠度为 f。对跨中截面,轴力N的偏心距为ei+f,即跨中截面的弯矩为 M=N(ei+f)。在截面和初始偏心距相
16、同的情况下,柱的长细比l0/h不同,侧向挠度 f 的大小不同,影响程度会有很大差别,将产生不同的破坏类型。,对于长细比l0/h5的短柱 侧向挠度 f 与初始偏心距ei相比很小 柱跨中弯矩M=N(ei+f)随轴力N的增加基本呈线性增长,直至达到截面承载力极限状态产生破坏。对短柱可忽略挠度f影响。,短柱破坏录像,长细比l0/h=530的中长柱 f 与ei相比已不能忽略。f 随轴力增大而增大,柱跨中弯矩M=N(ei+f)的增长速度大于轴力N的增长速度,即M随N 的增加呈明显的非线性增长,虽然最终在M和N的共同作用下达到截面承载力极限状态,但轴向承载力明显低于同样截面和初始偏心距情况下的短柱。因此,对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 混凝土结构 第四版 第05章 受压构件的截面承载力 第四 05 受压 构件 截面 承载力
链接地址:https://www.31ppt.com/p-6389401.html