材料科学研究方法-红外光谱和拉曼光谱.ppt
《材料科学研究方法-红外光谱和拉曼光谱.ppt》由会员分享,可在线阅读,更多相关《材料科学研究方法-红外光谱和拉曼光谱.ppt(92页珍藏版)》请在三一办公上搜索。
1、1,分子振动光谱(Vibration spectroscopy),深圳大学材料学院,红外光谱和拉曼光谱Infrared spectroscopy and Raman spectroscopy(IR and Raman),2,第一节 电磁波的一般概念,一、光的频率与波长 光是电磁波,有波长和频率两个特征。电磁波包括了一个极广阔的区域,从波长只有千万分之一纳米的宇宙线到波长用米,甚至千米计的无线电波都包括再内,每种波长的光的频率不一样,但光速都一样即31010cm/s。波长与频率的关系为:=c/=频率,单位:赫(HZ);=波长,单位:厘米(cm),表示波长的单位很多。如:1nm=10-7cm=10
2、-3m=300nm的光,它的频率为(1HZ=1S-1),频率的另一种表示方法是用波数,即在1cm长度内波的数目。如波长为300nm的光的波数为1/30010-7=33333/cm-1。,3,(2)电磁辐射的波动性 根据经典物理的观点:电磁波是具有相同位相的两个互相垂直的振动矢量。一个是沿y轴方向变化的电场矢量E,一个是沿Z轴方向变化的磁场矢量H、E和H都与电磁波的传播方向垂直,如图所示。电磁辐射的电场同物质中电子相互作用的结果:透射,反射,折射和吸收等现象,因此一般情况下仅用电场矢量 E 表示辐射就可以了。在讨论磁共振时,以磁矢量处理更为方便。,4,3.光谱的分类1)作用对象 a.原子光谱 气
3、态原子;b.分子光谱 气态或液态分子(原子和分子是产生光谱的基本粒子,由于他们的结构不同,其光谱特性也不同),2)作用机理(根据辐射能量传递的方式)光谱方法有可分为:a.发射光谱 b.吸收光谱 c.拉曼光谱,光谱分析法是指在光(或其它能量)的作用下,通过测量物质产生的发射光、吸收光或散射光的波长和强度来进行分析的方法。,5,4.物质对光的选择性吸收及吸收曲线,M+热,M+荧光或磷光,E=E2-E1=h 量子化;选择性吸收;分子结构的复杂性使其对不同波长光的吸收程度不同;用不同波长的单色光照射,测吸光度 吸收曲线与最大吸收波长 max;,M+h M*,光的互补:蓝 黄,基态 激发态E1(E)E2
4、,6,吸收曲线的讨论:,(1)同一种物质对不同波长光的吸光度不同。吸光度最大处对应的波长称为最大吸收波长max(2)不同浓度的同一种物质,其吸收曲线形状相似max不变。而对于不同物质,它们的吸收曲线形状和max则不同。,(动画),(3)吸收曲线可以提供物质的结构信息,并作为物质定性分析的依据之一。(4)不同浓度的同一种物质,在某一定波长下吸光度 A 有差异,在max处吸光度A 的差异最大。此特性可作为物质定量分析的依据。(5)在max处吸光度随浓度变化的幅度最大,所以测定最灵敏。吸收曲线是定量分析中选择入射光波长的重要依据。,7,5.红外光谱与电子跃迁,物质分子内部三种运动形式:(1)电子相对
5、于原子核的运动(2)原子核在其平衡位置附近的相对振动(3)分子本身绕其重心的转动 分子具有三种不同能级:电子能级、振动能级和转动能级 三种能级都是量子化的,且各自具有相应的能量 分子的内能:电子能量Ee、振动能量Ev、转动能量Er 即 EEe+Ev+Er evr,8,能级跃迁,分子中电子能级分类。(1)电子能级(2)振动能级(3)转动能级间跃迁的同时总伴随有振动和转动能级间的跃迁。即电子光谱中总包含有振动能级和转动能级间跃迁产生的若干谱线而呈现宽谱带。,9,10,分子吸收光谱 三类:,(1)转动光谱 分子所吸收的光能只能引起分子转动能级的跃迁,转动能级之间的能量差很小,位于远红外及微波区内,在
6、有机化学中用处不大。,(2)振动光谱 分子所吸收的光能引起震动能级的跃迁,吸收波长大多位于2.516m内(中红外区内),因此称为红外光谱。,(3)电子光谱 分子所吸收的光能使电子激发到较高能级(电子能级的跃迁)吸收波长在100400nm,为紫外光谱。,11,6 红外光谱定义 6.1 定义:红外光谱又称分子振动转动光谱,属分子吸收光谱。样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,使振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,记录百分透过率T%对波数或波长的曲线,即为红外光谱。主要用于化合物鉴定及分子结构表征,亦可用于定量分析。
7、,T(%),12,13,6.3.红外光谱特点1)红外吸收只有振-转跃迁,能量低;2)应用范围广:除单原子分子及单核分子外,几乎所有有机物均有红外吸收;3)分子结构更为精细的表征:通过IR谱的波数位置、波峰数目及强度确定分子基团、分子结构;4)定量分析;5)固、液、气态样均可用,且用量少、不破坏样品;6)分析速度快。7)与色谱等联用(GC-FTIR)具有强大的定性功能。,红外光谱的作用1可以确定化合物的类别(芳香类)2确定官能团:例:CO,CC,CC3推测分子结构(简单化合物)4定量分析,14,6.4 红外吸收的产生条件 分子吸收辐射产生振转跃迁必须满足两个条件:条件一:辐射光子的能量应与振动跃
8、迁所需能量相等。根据量子力学原理,分子振动能量Ev 是量子化的,即EV=(V+1/2)h为分子振动频率,V为振动量子数,其值取 0,1,2,分子中不同振动能级差为EV=Vh讨论:当EV=Ea(光子能量)或者a(光子频率)=V时,才可能发生振转跃迁。即:只有当红外辐射频率等于振动量子数的差值与分子振动频率的乘积时,分子才能吸收红外辐射,产生红外吸收光谱。,15,基频、倍频、泛频峰,分子吸收红外辐射后,由基态振动能级(=0)跃迁至第一振动激发态(=1)时,所产生的吸收峰称为基频峰。因为=1时,L=,所以 基频峰的位置(L)等于分子的振动频率。在红外吸收光谱上除基频峰外,还有振动能级由基态(=0)跃
9、迁至第二激发态(=2)、第三激发态(=3),所产生的吸收峰称为倍频峰。由=0跃迁至=2时,=2,则L=2,即吸收的红外线谱线(L)是分子振动频率的二倍,产生的吸收峰称为二倍频峰。由=0跃迁至=3时,=3,则L=3,即吸收的红外线 谱线(L)是分子振动频率的三倍,产生的吸收峰称为三倍频峰。其它类推。在倍频峰中,二倍频峰还比较强。三倍频峰以上,因跃迁几率很小,一般都很弱,常常不能测到。,16,由于分子非谐振性质,各倍频峰并非正好是基频峰的整数倍,而是略小一些。以HCl为例:基频峰(01)2885.9 cm-1 最强二倍频峰(02)5668.0 cm-1 较弱三倍频峰(03)8346.9 cm-1
10、很弱四倍频峰(04)10923.1 cm-1 极弱五倍频峰(05)13396.5 cm-1 极弱 除此之外,还有合频峰(1+2,21+2,),差频峰(1-2,21-2,)等,这些峰多数很弱,一般不容易辨认。倍频峰、合频峰和差频峰统称为泛频峰。,17,条件二:辐射与物质之间必须有耦合作用 分子在振动,转动过程中必须有偶极矩的净变化。即偶极矩的变化0,图62:偶极子在交变电场中的作用示意图,18,(1)红外活性 分子振动引起偶极矩的变化,从而产生红外吸收的性质,称为红外活性。其分子称为红外活性分子。相关的振动称红外活性振动。如H2O,HCl,CO为红外活性分子。(2)非红外活性 若0,分子振动和转
11、动时,不引起偶极矩变化。不能吸收红外辐射。即为非红外活性。其分子称为红外非活性分子。如 H2,O2,N2,Cl2.相应的振动称为红外非活性振动。,19,辐射与物质耦合作用的解释,为满足这个条件,分子振动必须伴随偶极矩的变化。红外跃迁是偶极矩诱导的,即能量转移的机制是通过振动过程所导致的偶极矩的变化和交变的电磁场(红外线)相互作用 发生的。分子由于构成它的各原子的电负性的不同,也显示不同的极性,称为偶极子。通常用分子的偶极矩()来描述分子极性的大小。当偶极子处在电磁辐射的电场中时,该电场作周期性反转,偶极子将经受交替的作用力而使偶极矩增加或减少。由于偶极子具有一定的原有振动频率,显然,只有当辐射
12、频率与偶极子频率相匹时,分子才与辐射相互作用(振动耦合),20,而增加它的振动能,使振幅增大,即分子由原来的基态振动跃迁到较高振动能级。因此,并非所有的振动都会产生红外吸收,只有发生偶极矩变化(0)的振动才能引起可观测的红外吸收光谱,该分子称之为红外活性的;=0的分子振动不能产生红外振动吸收,称为非红外活性的。当一定频率的红外光照射分子时,如果分子中某个基团的振动频率和它一致,二者就会产生共振,此时光的能量通过分子偶极矩的变化而传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁。如果用连续改变频率的红外光照射某样品,由于试样对不同频率的红外光吸收程度不同,使通过试样后的红外光在一些波数范
13、围减弱,在另一些波数范围内仍然较强,用仪器记录该试样的红外吸收光谱,进行样品的定性和定量分析。,21,第二节 分子振动1)双原子分子振动 分子的两个原子以其平衡点为中心,以很小的振幅(与核间距相比)作周期性“简谐”振动,其振动可用经典刚性振动描述:k为化学键的力常数(dyn/cm);c=3 1010cm/s;为双原子折合质量如折合质量 以原子质量为单位;k以mdyn/为单位。则有:,22,例如:HCl分子k=5.1 mdyn/,则HCl的振动频率为:对于C-H:k=5 mdyn/;=2920 cm-1对于C=C,k=10 mdyn/,=1683 cm-1对于C-C,k=5 mdyn/;=119
14、0 cm-1,=1,=6,23,影响基本振动跃迁的波数或频率的直接因素为化学键力常数 k 和原子质量。k 大,化学键的振动波数高,如:kCC(2222cm-1)kC=C(1667cm-1)kC-C(1429cm-1)(质量相近)质量m大,化学键的振动波数低,如:mC-C(1430cm-1)mC-N(1330cm-1)mC-O(1280cm-1)(力常数相近)经典力学导出的波数计算式为近似式。因为振动能量变化是量 子化的,分子中各基团之间、化学键之间会相互影响,即分子 振动的波数与分子结构(内因)和所处的化学环境(外因)有关。,24,2)多原子分子 多原子分子的振动更为复杂(原子多、化学键多、空
15、间结构复杂),但可将其分解为多个简正振动来研究。简正振动 整个分子质心不变、整体不转动、各原子在原地作简谐振动且频率及位相相同。此时分子中的任何振动可视为所有上述简谐振动的线性组合。,25,简正振动基本形式伸缩振动:原子沿键轴方向伸缩,键长变化但键角不变的振动。变形振动:基团键角发生周期性变化,但键长不变的振动。又称弯曲振动或变角振动。上图给出了各种可能的振动形式。,26,27,(4)理论简振振动数(峰数),整个分子重心的平动(3 freedom)整个分子绕其重心的转动(3 freedom)每个原子相对于其它原子的运动(振动),一个点:3自由度N个点:3N自由度,3N-6,(linear mo
16、lecule),分子:N个原子空间的运动:3N freedom,3N-5,简正振动的数目称为振动自由度,每个振动自由度相当于红外光谱图上一个基频吸收带。,28,每个原子的运动可以用固定坐标系的直角坐标(x,y,z)表示,如果分子中有N个原子,就需要3N 个(x,y,z)表示,即具有3N个自由度。,分子的三个平动和三个转动自由度对分子的振动无贡献,因而非线性分子有3N-6个振动自由度。,对于线性分子,由于不存在绕分子轴本身的“转动”,因此,有3N-5个振动自由度。,由于某些振动模可能是简并的,即有二个或三个简正振动模具有共同的频率,称二重或三重简并,一般来说所能观察到的振动基频数目3N-6。,振
17、动自由度,29,如H2O的振动自由度等于 3363,图65:水的红外光谱图,30,理论上,多原子分子的振动数应与谱峰数相同,但实际上,谱峰数常常少于理论计算出的振动数,这是因为:a)偶极矩的变化=0的振动,不产生红外吸收,如CO2;b)谱线简并(形式不同,但其频率相同振动,相同频率的振动吸收重叠);c)仪器分辨率或灵敏度不够,有些谱峰观察不到。d)有些吸收带落在仪器检测范围之外。以上介绍了基本振动所产生的谱峰,即基频峰(V=1允许跃迁)。在红外光谱中还可观察到其它峰跃迁禁阻峰:倍频峰:由基态向第二、三.振动激发态的跃迁(V=2、3.);合频峰:分子吸收光子后,同时发生频率为1,2的跃迁,此时
18、产生的跃迁为 1+2的谱峰。差频峰:当吸收峰与发射峰相重叠时产生的峰 1-2。泛频峰可以观察到,但很弱,可提供分子的“指纹”。,泛频峰,31,图6-6二氧化碳的红外光谱图,32,5.红外吸收谱带的强度红外吸收谱带的强度取决于分子振动时偶极矩的变化,而偶极矩与分子结构的对称性有关。分子对称度高,振动偶极矩小,产生的谱带就弱;反之则强。如C=C,C-C因对称度高,其振动峰强度小;而C=X,C-X,因对称性低,其振动峰强度就大。峰强度可用很强(vs)、强(s)、中(m)、弱(w)、很弱(vw)等来表示。说明:1)吸收峰强度与分子偶极距变化的平方成正比。而偶极距变化主要由化学键两端原子间的电负性差;振
19、动形式;其它如共振、氢键、共轭等因素;2)强度比UV-Vis强度小2-3个数量级;3)IR光度计能量低,需用宽狭缝,同一物质的随不同仪器而不同,因此常用vs,s,m等来表示吸收强度。,33,第三节 红外吸收峰的特征,物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和CC等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。通常把这种能代表及存在、并
20、有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。,34,1.基团频率区和指纹区概念,(一)基团频率区 中红外光谱区可分成4000 cm-1 1300 cm-1和1800cm-1(1300 cm-1)600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。(二)指纹区 在1800 cm-1(1300 cm-1)600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动与整个分子的结构有关。当分子结构稍有
21、不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。,35,2、红外吸收频率区间,2.1)基团频率区,36,叁键及累积双键区(25001900cm-1),37,38,2.2)指纹区(可分为两个区),在红外分析中,通常一个基团有多个振动形式,同时产生多个谱峰(基团特征峰及指纹峰),各类峰之间相互依存、相互佐证。通过一系列的峰才能准确确定一个基团的存在。,例如:其中1375 cm-1的谱带为甲基的C-H对称弯曲振动,对识别甲基十分有用,C-O的伸缩振动在13001000 cm-1
22、,是该区域最强的峰,也较易识别。,例如,烯烃的=C-H面外变形振动出现的位置,很大程度上决定于双键的取代情况。对于RCH=CH2结构,在990 cm-1和910 cm-1出现两个强峰;为RC=CRH结构是,其顺、反构型分别在690 cm-1和970 cm-1出现吸收峰,可以共同配合确定苯环的取代类型。,39,3.影响基团频率的因素 基团频率主要由化学键的力常数决定。但分子结构和外部环境因素也对其频率有一定的影响。1)电子效应:引起化学键电子分布不均匀的效应。诱导效应(Induction effect):取代基电负性静电诱导电 子分布改变力常数增加特征频率增加(移向高波数)。,例如,一般电负性大
23、的基团或原子吸电子能力较强,与烷基酮羰基上的碳原子数相连时,由于诱导效应就会发生电子云由氧原子转向双键的中间,增加了C=O键的力常数,使C=O的振动频率升高,吸收峰向高波数移动。随着取代原子电负性的增大或取代数目的增加,诱导效应越强,吸收峰向高波数移动的程度越显著。,40,共轭效应(Conjugated effect):电子云密度均化键长变长k 降低特征频率减小(移向低波数)。共轭效应使共轭体系中的电子云密度平均化,结果使原来的双键略有伸长(即电子云密度降低)、力常数减小,使其吸收频率向低波数方向移动。例如酮的c=o,因与苯环共扼而使c=o的力常数减小,振动频率降低。,41,中介效应(Meso
24、meric effect):当含有孤对电子的原子(O、S、N等)与具有多重键的原子相连时,也可起类似的共轭作用,称为中介效应。,例如:酰胺中的C=O因氮原子的共轭作用,使C=O上的电子云更移向氧原子,C=O双键的电子云密度平均化,造成C=O键的力常数下降,使吸收频率向低波数位移。,对同一基团,若诱导效应和中介效应同时存在,则振动频率最后位移的方向和程度,取决于这两种效应的结果。当诱导效应大于中介效应时,振动频率向高波数移动,反之,振动频率向低波数移动。,42,2)氢键效应(X-H)形成氢键使电子云密度平均化(缔合态),使体系能量下降,基团伸缩振动频率降低,其强度增加但峰形变宽。例如:羧酸中的
25、羰基和羟基之间容易形成氢键,使羰基的频率降低。如乙醇:CH3CH2OH(O=H=3640cm-1)(CH3CH2OH)2(O=H=3515cm-1)(CH3CH2OH)n(O=H=3350cm-1),43,3)振动耦合(Coupling)当两个振动频率相同或相近的基团相邻具有一公共原子时,由于一个键的振动通过公共原子使另一个键的 长度发生改变,产生一个“微扰”,从而形成了强烈的振动相互作用。其结果是使振动频率发生变化,一个向高频移动,另一个向低频移动,谱带分裂。振动耦合常出现在一些二羰基化合物中,如羧酸酐中两个羰基的振动耦合,使C=O吸收峰分裂成两个峰,波数分别为1820 cm-1(反对耦合)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 材料科学 研究 方法 红外 光谱
链接地址:https://www.31ppt.com/p-6388466.html