机器学习与知识发现61机器学习概述62符号学习.ppt
《机器学习与知识发现61机器学习概述62符号学习.ppt》由会员分享,可在线阅读,更多相关《机器学习与知识发现61机器学习概述62符号学习.ppt(56页珍藏版)》请在三一办公上搜索。
1、第6章 机器学习与知识发现 6.1 机器学习概述 6.2 符号学习 6.3 神经网络学习 6.4 知识发现与数据挖掘,6.1 机器学习概述6.1.1 机器学习的概念心理学中对学习的解释是:学习是指(人或动物)依靠经验的获得而使行为持久变化的过程。Simon认为:如果一个系统能够通过执行某种过程而改进它的性能,这就是学习。Minsky认为:学习是在人们头脑中(心理内部)进行有用的变化。Tom M.Mitchell在机器学习一书中对学习的定义是:对于某类任务T和性能度P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么,我们称这个计算机程序从经验E中学习。当前关于机器学习的许多文献
2、中也大都认为:学习是系统积累经验以改善其自身性能的过程。,总之:学习与经验有关;学习可以改善系统性能;学习是一个有反馈的信息处理与控制过程。因为经验是在系统与环境的交互过程中产生的,而经验中应该包含系统输入、响应和效果等信息。因此经验的积累、性能的完善正是通过重复这一过程而实现的。,6.1.2 机器学习的原理,图 9-1 机器学习原理1,图 9-2 机器学习原理2,图 9-3 机器学习原理3,图 9-4 机器学习原理4,图 9-5 机器学习原理5,6.1.3 机器学习的分类 1.基于学习策略的分类(1)模拟人脑的机器学习符号学习:模拟人脑的宏观心理级学习过程,以认知心理学原理为基础,以符号数据
3、为输入,以符号运算为方法,用推理过程在图或状态空间中搜索,学习的目标为概念或规则等。符号学习的典型方法有:记忆学习、示例学习、演绎学习、类比学习、解释学习等。神经网络学习(或连接学习):模拟人脑的微观生理级学习过程,以脑和神经科学原理为基础,以人工神经网络为函数结构模型,以数值数据为输入,以数值运算为方法,用迭代过程在系数向量空间中搜索,学习的目标为函数。典型的连接学习有权值修正学习、拓扑结构学习。,(2)直接采用数学方法的机器学习 主要有统计机器学习。2.基于学习方法的分类(1)归纳学习 符号归纳学习:典型的符号归纳学习有示例学习,决策树学习。函数归纳学习(发现学习):典型的函数归纳学习有神
4、经网络学习、示例学习,发现学习,统计学习。(2)演绎学习(3)类比学习:典型的类比学习有案例(范例)学习。(4)分析学习:典型的分析学习有案例(范例)学习、解释学习。,3.基于学习方式的分类(1)有导师学习(监督学习):输入数据中有导师信号,以概率函数、代数函数或人工神经网络为基函数模型,采用迭代计算方法,学习结果为函数。(2)无导师学习(非监督学习):输入数据中无导师信号,采用聚类方法,学习结果为类别。典型的无导师学习有发现学习、聚类、竞争学习等。(3)强化学习(增强学习):以环境反馈(奖/惩信号)作为输入,以统计和动态规划技术为指导的一种学习方法。,4.基于数据形式的分类(1)结构化学习:
5、以结构化数据为输入,以数值计算或符号推演为方法。典型的结构化学习有神经网络学习、统计学习、决策树学习、规则学习。(2)非结构化学习:以非结构化数据为输入,典型的非结构化学习有类比学习、案例学习、解释学习、文本挖掘、图像挖掘、Web挖掘等。,5.基于学习目标的分类(1)概念学习:即学习的目标和结果为概念,或者说是为了获得概念的一种学习。典型的概念学习有示例学习。(2)规则学习:即学习的目标和结果为规则,或者说是为了获得规则的一种学习。典型的规则学习有决策树学习。(3)函数学习:即学习的目标和结果为规则,或者说是为了获得函数的一种学习。典型的函数学习有神经网络学习。(4)类别学习:即学习的目标和结
6、果为对象类,或者说是为了获得类别的一种学习。典型的类别学习有聚类分析。(5)贝叶斯网络学习:即学习的目标和结果是贝叶斯网络,或者说是为了获得贝叶斯网络的一种学习。其又可分为结构学习和参数学习。,6.2 符号学习6.2.1 记忆学习 记忆学习方法简单,但学习系统需要几种能力:(1)能实现有组织的存储信息。(2)能进行信息综合。(3)能控制检索方向。当存储对象愈多时,其中可能有多个对象与给定的,6.2.2 示例学习 示例学习也称实例学习,它是一种归纳学习。示例学习是从若干实例(包括正例和反例)中归纳出一般概念或规则的学习方法。,图 9-6 第一个拱桥的语义网络,图 9-7 第二个拱桥的语义网络,图
7、 9-8 学习程序归纳出的语义网络,图 9-9 拱桥概念的语义网络,例 9.1 假设示例空间中有桥牌中同花概念的两个示例:示例1:花色(c1,梅花)花色(c2,梅花)花色(c3,梅花)花色(c4,梅花)同花(c1,c2,c3,c4)示例2:花色(c1,红桃)花色(c2,红桃)花色(c3,红桃)花色(c4,红桃)同花(c1,c2,c3,c4)关于同花的一般性规则:花色(c1,x)花色(c2,x)花色(c3,x)花色(c4,x)同花(c1,c2,c3,c4),对于这个问题可采用通常的曲线拟合技术,归纳出规则:(x,y,2x+3y+1)即 z2x3y1,例9.2 假设示例空间存放有如下的三个示例:示
8、例1:(0,2,7)示例2:(6,-1,10)示例3:(-1,-5,-10)这是三个3维向量,表示空间中的三个点。现要求求出过这三点的曲线。,6.2.3 决策树学习 1什么是决策树 决策树(decision tree)也称判定树,它是由对象的若干属性、属性值和有关决策组成的一棵树。其中的节点为属性(一般为语言变量),分枝为相应的属性值(一般为语言值)。从同一节点出发的各个分枝之间是逻辑“或”关系;根节点为对象的某一个属性;从根节点到每一个叶子节点的所有节点和边,按顺序串连成一条分枝路径,位于同一条分枝路径上的各个“属性-值”对之间是逻辑“与”关系,叶子节点为这个与关系的对应结果,即决策。,决策
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机器 学习 知识 发现 61 概述 62 符号
链接地址:https://www.31ppt.com/p-6388163.html