地图数据处理.ppt
《地图数据处理.ppt》由会员分享,可在线阅读,更多相关《地图数据处理.ppt(113页珍藏版)》请在三一办公上搜索。
1、4 地图数据处理,地图数据按其结构主要可分为矢量数据结构和栅格数据结构两种。因此,对地图数据的处理也可分为两类,即矢量数据处理和栅格数据处理。4.1 矢量数据处理4.1.1 数据预处理 数据预处理是使数据便于存储、管理和进一步分析应用而进行的变换、加工等,主要包括坐标变换、数据压缩等。1、矢量数据的坐标变换 在地图数据的采集中,由数字化过程中产生的明显误差可以在编辑修改过程中消除,但是图纸变形产生的坐标数据误差却难以纠正,因此要对其进行几何改正。,而当所使用的数据是来自不同地图投影的图幅时,则需将一种投影的几何数据转换成所需的另一种投影的几何数据,这就需要进行地图投影变换。,(1)几何改正,几
2、何纠正的内容 根据空间数据的表现形式,可将空间数据的几何纠正分为图形数据的几何纠正与图像数据的几何纠正。图形数据的纠正 对图形的纠正,一般采用四点纠正法或逐网格纠正的方法。四点纠正法:是根据一定的数学变换函数,输入需纠正的图形的图幅行、列号、比例尺、图幅名称等,分别采集四个图廓控制点坐标来完成。逐网格纠正法:适用于四点纠正法不能满足精度要求的情况。这种方法与四点纠正法的不同点在于采样点数量不同,是逐方里网进行的,即对每一个方里网,都要采点。具体采点时,要先采源点(需纠正的地形图),后采目标点(标准图廓);先采图廓点和控制点,后采方里网点。,影像数据的纠正 此处所说的图像数据纠正主要是指遥感影像
3、的纠正。一般选用与遥感影像比例尺相近的地形图或正射影像图为参考,选用一定的数学变换函数,分别在要纠正的遥感影像与标准地形图或正射影像图上采集同名地物点。具体采点时,要先采源点(影像),后采目标点(地形图或正射影像图)。选点时,要注意选点的均匀性分布,点的数目也不能选的太多。如果点位分布不均或点数目太多,不但不能保证精度,反而会使影像产生变形。选点时,点位应选则人工建筑构成、固定的地物点,如渠或道路交叉点、桥梁等,尽量不要选河床易变动的河流交叉点,以免参考点的移位影响纠正的精度。,仿射变换 仿射变换是较简单的一次变换,是使用较多的对空间几何数据进行纠正的方式,它只考虑地理实体在平面上的变形(方向
4、上)。仿射变换的公式为:式中 为理论值,为当前坐标,为待定系数。,常用的几何改正方法有高次变换、二次变换和仿射变换等。,因此,只需知道不在同一直线上的3个控制点在当前坐标系统中的坐标及其实际的理论值,即可求得待定系数。如此,其它地理实体的纠正后的坐标值即可求得。实际操作过程中,往往采用多余观测的方式,即多选几个控制点,一般4个以上,且不在同一直线上、均匀分布。控制点不在同一直线上是保证所列方程组有解,而控制点均匀分布的目的是减少误差传递。然后利用最小二乘法进行处理,从而求得待定系数,达到提高几何纠正精度的目的。,仿射变换的主要特征是:直线变换前后仍为直线平行线仍为平行线不同方向上,线段长度比发
5、生改变仿射变换适用于图件存在线性变形的情况。,二次变换 采用多项式拟合方法,其表达式为:,同理,只需知道不在同一直线上的5个控制点在当前坐标系统中的坐标及其实际的理论值,即可求得待定系数。同样,在实际操作过程中,也往往采用多余观测的方式,选择5个以上的控制点。控制点也应在整幅图内均匀分布,不得位于同一直线,以提高纠正的精度。二次变换的特征为:直线可能变换后成为二次曲线 适用于原图件存在着非线性变形的情况。,高次变换 高次变换的公式为:,代表三次及以上的高次项之和。,在上述高次变换方程中,当不考虑A和B时,则变成二次变换方程,称为二次变换。,采用这种方式进行几何纠正时,需要6个以上的控制点的坐标
6、及其理论值才能解求待定系数。同样,在实际操作中也通常要求多余观测,以提高精度。控制点也不能位于同一直线,且在原图范围内均匀分布。,(2)投影变换 在地理信息系统应用中,往往要管理来自不同地图投影的地理数据,而这些不同投影的数据在利用地理信息系统进行综合分析、信息复合或数据输出时,则需要将不同投影的地理数据统一到同一个投影空间,这就意味着要对数据进行投影变换。,投影变换方法 常用的投影变换的方法有三种:解析变换、数值变换、数值解析变换。解析变换 该方法主要是找出两投影进行变换时的解析式。根据计算方法的不同,解析变换又可分为正解变换与反解变换。正解变换 利用原图点的坐标,直接解求出两种类型的投影进
7、行变换时的数学关系式。,反解变换 这种变换方式的思想是:首先将原图点的坐标转换成其对应的经纬度坐标(),然后再将换算出的该点的经纬度坐标,转换成所需投影的坐标。,地图投影的解析变换适用于原图投影已知的情况。,数值变换 如若原图投影未知或者不易求得原图与变换后投影间的关系式,则可利用多项式,采用数值逼近的方法来建立两投影间的关系表达式。这种方法称为数值投影变换。该投影变换的实质是根据两投影在变换区域内的一定数量的同名数字化点,采用数学插值方法、待定系数法、有限元法等,实现投影变换。变换公式如下:,具体应用时,可从两种投影种选取与待定系数的个数相等的同名点(如此处10个以上),量测其坐标,代入变换
8、公式,即可求出待定系数。之后,其它各点投影后的坐标即可解求。利用该公式进行数值逼近时,取至三次项要比取至二次项的精度有明显的提高,因此通常将上式取至三次项。如若再进一步增加次数,将会明显增加计算的工作量,而对于精度的提高则没有明显的改善。,常用的几个例子:兰伯特投影,为纬度,2、矢量数据的压缩,常用的矢量数据压缩方法有:(1)间隔取点法(2)垂距法(3)偏角法(4)道格拉斯普克法(5)光栏法,(1)间隔取点法,(2)垂距法 垂距法的基本思想是:从任一个端点起,每次顺序取曲线上的三个点,计算中间点与其他两点连线的垂线距离,并与限差d比较,若D=d,则中间点保留,然后顺序取下三个点继续处理,直到这
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 地图 数据处理
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-6381745.html