金属基复合材料的制造技术.ppt
《金属基复合材料的制造技术.ppt》由会员分享,可在线阅读,更多相关《金属基复合材料的制造技术.ppt(156页珍藏版)》请在三一办公上搜索。
1、第4章 金属基复合材料的制造技术,4.1 概述,金属基复合材料制造技术是影响金属基复合材料迅速发展和广泛应用的关键问题。金属基复合材料的性能、应用、成本等在很大程度上取决于金属基复合材料的的制造方法和工艺。金属基复合材料的制造相对比较复杂和困难:金属熔点较高,需要在高温下操作;同时不少金属对增强体表面润湿性很差,甚至不润湿,加上金属在高温下很活泼,易与多种增强体发生反应。目前虽然已经研制出不少制造方法和工艺,但仍存在一系列问题。因此,研究发展有效的金属基复合材料制造方法一直是金属基复合材料研究中最重要的问题之一。本章将涉及不同金属基复合材料的制造方法、原理及特点等。,4.1.2 制造技术应具备
2、的条件,4.1.3 金属基复合材料制造的关键性技术,由于金属所固有的物理和化学特性,其加工性能不如树脂好,在制造金属基复合材料中还需解决一些关键技术,其中主要表现于:,在加工过程中,为了确保基体的浸润性和流动性,需要采用很高的加工温度(往往接近或高于基体的熔点)。在高温下,基体与增强材料易发生界面反应,有时会发生氧化生成有害的反应产物。这些反应往往会对增强材料造成损害,形成过强结合界面。过强结合界面会使材料产生早期低应力破坏。高温下反应产物通常呈脆性,会成为复合材料整体破坏的裂纹源。因此控制复合材料的加工温度是一项关键技术。,解决的方法是:尽量缩短高温加工时间,使增强材料与基体界面反应时 间降
3、低至最低程度;通过提高工作压力使增强材料与基体浸润速度加快;采用扩散粘接法可有效地控制温度并缩短时间。,增强材料与基体浸润性差是金属基复合材料制造的又一关键技术,绝大多数的金属基复合材料如:碳/铝、碳/镁、碳化硅/铝、氧化铝/铜等,基体对增强材料浸润性差,有时根本不发生润湿现象。解决的方法是:加入合金元素,优化基体组分,改善基体对增强材料的 浸 润性,常用的合金元素有:钛、锆,铌、铈等;对增强材料进行表面处理,涂敷一层可抑制界面反应的 涂层,可有效改善其浸润性,表面涂层涂覆方法较多,如化学气相沉积,物理气相沉积,溶胶凝胶和电镀或 化学 镀等。,按结构设计需求,使增强材料按所需方向均匀地分布于基
4、体中也是金属基复合材料制造中的关键技术之一。增强材料的种类较多,如短纤维、晶须、颗粒等,也有直径较粗的单丝,直径较细的纤维束等。在尺寸形态、理化性能上也有很大差异,使其均匀地、或按设计强度的需要分布比较困难。解决的方法是:对增强体进行适当的表面处理,使其浸渍基体速度加快;加入适当的合金元素改善基体的分散性;施加适当的压力,使其分散性增大。施加外场(磁场,超声场等),4.2 固态制造技术,固态制造技术主要包括:,粉末冶金,热压,热等静压,热轧,热挤压,热拉,爆炸焊接,粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合材料以及各种类型制品的
5、工艺技术。粉末冶金法与生产陶瓷有相似的地方,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。由于粉末冶金技术的优点,它已成为解决新材料问题的钥匙,在新材料的发展中起着举足轻重的作用。,粉末冶金工艺的基本工序是:,1、原料粉末的制备。,现有的制粉方法大体可分为两类:机械法和物理化学法。而机械法可分为:机械粉碎及雾化法;物理化学法又分为:电化腐蚀法、还原法、化合法、还原-化合法、气相沉积法、液相沉积法以及电解法。,不锈钢真空球磨罐,QM-星行球磨机,球磨工艺,球磨时间球料比球磨转速球磨气氛(干磨、湿磨),球磨工艺-球磨时间,球磨工艺-球料比,球料比越大,硬质粉体越细小。而塑性较好的金属粉体如图,
6、2、压制成坯块。,成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。成型的方法基本上分为加压成型和无压成型。加压成型中应用最多的是模压成型。,液压式压力机,压力机压力表,压力机压力调节阀,上模,下模,液压机原理图,我国粉末冶金专家黄培云教授得出粉末体密度的变化与压制压力的关系式,即双对数压制方程:式中dm致密合金的密度;d0压坯原始密度;d压坯密度;P压制压力;n常数,硬化指数的倒数;M常数,相当于压制模量。采用模压成型压制出的压坯致密度可达58-62%。,脱脂,在试样烧结前,必须将成形剂脱除掉。成形剂的挥发温度通常是200-400,如在此温度未脱除干净,炉内温度继续上升时,成
7、形剂将裂解而使烧结体增碳,同时产生大量的气孔。脱脂在还原气氛炉内进行。,在200 到400 之间升温和保温时间都很长,其目的就是使成形剂充分挥发。加热到800 并短时保温的目的是提高压坯的强度。,烧结是粉末冶金工艺中的关键性工序。成型后的压坯通过烧结使其得到所要求的最终物理机械性能。烧结又分为单元系烧结和多元系烧结。对于单元系和多元系的固相烧结,烧结温度比所用的金属及合金的熔点低;对于多元系的液相烧结,烧结温度一般比其中难熔成分的熔点低,而高于易熔成分的熔点。除普通烧结外,还有松装烧结、熔浸法、热压法等特殊的烧结工艺。温度,时间,气氛.,3、坯块的烧结,箱式电阻炉,真空烧结炉,烧结后的处理,可
8、以根据产品要求的不同,采取多种方式。如精整、浸油、机加工、热处理及电镀。此外,近年来一些新工艺如轧制、锻造也应用于粉末冶金材料烧结后的加工,取得较理想的效果。,4、产品的后序处理,(6)可以充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收 废旧金属作原料,是一种可有效进行材料再生和综合 利用的新技术。,(3)可以容易地实现多种类型的复合,充分发挥各组元材料 各自的特性,是一种低成本生产高性能金属基和陶瓷复 合材料的工艺技术。,(4)可以生产普通熔炼法无法生产的具有特殊结构和性能的 材料和制品,如新型多孔生物材料,多孔分离膜材料、高性能结构陶瓷和功能陶瓷材料等。,(5)可以实现净近形成形和自动化批量
9、生产,从而,可以有 效地降低生产的资源和能源消耗。,粉末冶金是最早用来制造金属基复合材料的方法,早在1961年Kopenaal等人就利用粉末冶金法制造纤维体积含量为2040的碳铝复合材料,但由于性能很低,也无有效措施加以提高,这种方法已不用来制造长纤维增强复合材料,而主要用于制造颗粒或晶须增强金属基复合材料。,1、工艺过程及注意事项,美国的DWA公司用此法制造了不同成分的铝合金基体和不同颗粒(晶须)含量的复合材料及各种零件、管材、型材和板材,它们具有很高的比强度、比模量和耐磨性,已用于汽车、飞机、航天器等。,粉末冶金法也被用来制造钛基、金属间化合物基复合材料。例如,含TiC颗粒10的TiC/T
10、i6Al4V复合材料,其650的高温弹性模量提高于15,使用温度可提高100。基体粉末和颗粒(晶须)增强材料的混合均匀以及基体粉末的防止氧化是整个工艺的关键,必须采取有效措施。与搅拌铸法相比,在粉末冶金法中颗粒(晶须)的含量不受限制,尺寸也可以在较大范围内变化,但材料的成本较高,制造大尺寸的零件和坯料有一定困难。,2、工艺适应性 该工艺适于制造SiCp/Al、SiCW/Al、Al2O3/Al、TiB2/Ti等金属基复合材料零部件、板材或锭坯等。常用的增强材料有:SiCP、Al2O3、SiC、W、B4CP等颗粒、晶须及短纤维等。常用的基体金属有:Al、Cu、Ti等。,4.2.2 热压和热等静压技
11、术,热压法和热等静压法亦称扩散粘接法,是加压焊接的一种,因此有时也称扩散焊接法。它是在较长时间的高温及不大的塑性变形作用下依靠接触部位原子间的相互扩散进行的。,扩散粘接过程可分为三个阶段:粘接表面之间的最初接触,由于加热和加压使表面发生变 形、移动、表面膜(通常是氧化膜)破坏;随着时间的进行发生界面扩散和体扩散,使接触面粘接;由于热扩散结合界面最终消失,粘接过程完成。,在发动机制造中,热等静压机已用于粉末高温合金涡轮盘和压气盘的成型。,粉末高温合金热等静压或热等静压加锻造的盘件已在多种高推重比航空发动机上应用。同样,热等静压还用于制造粉末钛合金风扇盘和飞机上的粉末铝合金和粉末钛合金承力构件。在
12、航天器制造工业中,热等静压主要用于制造致密的碳质结构件,如火箭的舵面和固体火箭发动机喷管喉衬等。,各种合金的精密铸件,如高温合金涡轮叶片和铸钛机匣等,经热等静压致密化处理可消除内部疏松和缩孔,提高性能、可靠性和使用寿命。热等静压还是返修旧件以延长使用寿命的一种有效方法。,Bodycote IMT Inc.公司的一台大型 QUINTUS热等静压机,炉体热区直径 1.68 米,在热等静压机中生产从金属粉末直接成型的接近净形状零件,在热等静压机中处理的钛合金铸件,用于消除在铸造过程中形成的内部微空和缺陷,在热等静压机中处理的人工关节,用于消除在铸造过程中形成的内部微空和缺陷,工艺适用性,(1)热压技
13、术 热压技术适用于制造B/Al、SiC/Al、SiC/TiC/Al、C/Mg等.复合材料零部件,管材和板材等。常用的增强材料有:B、SiC、C和W等。常用的基体金属有:Al,Ti、Cu、耐热合金等。,(2)热等静压技术 此技术适用于制造B/Al、SiC/Ti管材。常用的增强材料有:B、SiC、W等。常用的基体金属有:Al、Ti和超合金等。,4.2.3 热轧、热挤压和热拉技术,金属材料中成熟的成型加工工艺,在此用于制造复合材料。,热轧法热挤压法热拉法,热轧法主要用来将已复合好的颗粒、晶须、短纤维增强金属基复合材料锭坯进一步加工成板材。由金属箔和连续纤维组成的预制片制成板材,如铝箔与硼纤维、铝箔与
14、钢丝。为了提高粘接强度,常在纤维上涂银、镍、铜等涂层,轧制时为了防止氧化常用钢板包覆。与金属材料的轧制相比,长纤维金属箔轧制时每次的变形量小、轧制道次多。对于颗粒或晶须增强金属基复合材料板材,先经粉末冶金或热压成坯料,再经热轧成复合材料板材。适用的复合材料:SiCp-Al、SiCW-Cu、Al2O3W-Al、Al2O3W-Cu等。,热轧机工作原理示意图,铝锭熔炼炉静置炉过滤铸嘴轧机中间机组卷取机,热轧系统基本流程为:,按流动特性和挤压力的变化规律,可将挤压过程分为:,填充挤压阶段:金属在挤压杆(力)的作用下首先充满挤压筒和模孔(金属主要径向流动),挤压力急剧升高;基本挤压阶段:又称层流挤压阶段
15、,金属不发生紊乱流动,即锭外(内)层金属出模后仍在外(内)层,挤压力稳中有降;,终了挤压阶段:又称紊流挤压阶段,金属发生紊乱流动,即外层进入内层,挤压力上升。,(1)填充挤压阶段,挤压时,为便于将锭坯放入筒中,常使锭坯外径小于筒内径115mm,因此在挤压力的作用下,锭坯首先径向流动充满挤压筒,同时有少量金属流入模孔。杆、垫片、锭坯开始接触到锭坯充满挤压筒的阶段称为填充挤压阶段。,A 必要性 a 操作要求;b 实心锭挤管,否则穿孔针弯曲导致管材偏心;c 制品要求横向性能,如航空用型材必须有一定的镦粗变形(2530),B 应力分析,作用于坯料上的外力:挤压力:P;模端面反力:N;摩擦力:T。,基本
16、应力状态类似于自由体镦粗,为三向压应力,即轴向应力L、径向应力r、周向应力。且可看成是主应力,但由于模孔的存在,导致L分布不均匀,体现在:,径向:中心小,两边大,差异由前向后逐渐减小。,轴向:对着模孔部分:由前向后增大 对着模壁部分:由前向后减小,C 变形(应变)分析,应变状态:一向压缩(轴向)、二向延伸(径向、周向)变形过程:开始出鼓形,中部首先充满挤压筒;继续加力,上部充满挤压筒;最后,下部充满挤压筒。,D 坯料端面变形分析,填充挤压时,部分金属会流入模孔,但此部分金属并不是发生塑性变形后流入模孔的,而是被剪出的,其组织是铸态组织,必须切下(棒材头)。,原因:轴向应力在径向上的分布是不均匀
17、的,且在模孔周围最大,这种应力突变会产生很大的切应力,当此切应力达到材料的剪切极限时,对着模孔部分的金属便沿模孔被剪出。,E 填充阶段应注意的问题 a 尽量减小变形量(锭坯与挤压筒的间隙),否则易造成:制品性能不均匀;棒材头大,即切头大;低塑性材料易出现表面裂纹。此阶段的变形量用填充挤压系数表征,定义填充挤压系数为:,一般,b 锭坯的长度与直径比小于34,即L/D3-4。否则变形不均出现鼓形,甚至失稳弯曲,导致封闭在模、筒交界处的空气压入表面微裂纹中,出模后若焊合则形成气泡,若未焊合则出现起皮缺陷。,c 锭坯梯温加热,即坯料获得长度上的原始温度梯度,变形抗力低的高温端靠近模孔,填充挤压时坯料由
18、前向后依次变形,从而将空气排除。,(2)基本挤压阶段 金属从模孔中流出到锭坯长度等于变形区高度的阶段。A 挤压比 挤压时的变形量常用挤压比表征,定义挤压比为:,单孔模挤压时,挤压比为:,挤压比的大小由被挤压材料的塑性决定,可查表。,B 应力分析,外力:挤压力P;筒、模的反力N;筒、模、垫片与坯料间的摩擦力T。基本应力状态:为三向压应力,即轴向应力L、径向应力r、周向应力。基本应变状态:为一向延伸变形,二向压缩变形,即轴向延伸变形L、径向压缩变形r、周向压缩变形。I1区:三向压应力|r|L|L0,r|r|L0,|r|III区为死区:三向等值压应力IV区为剪切变形区,轴向应力L分布:轴向上:由前向
19、后逐渐增大;径向上:由中心向边部逐渐增大。,2,2,C 变形(应变)分析,应变状态:二向压缩(径向、周向)、一向延伸(轴向)变形规律(应变分布):可由此阶段坐标网格变化分析,如下图。,a 纵向(水平方向)网格在进、出模孔发生方向相反的两次弯曲,弯曲程度由内向外逐渐增大,说明变形是不均匀的。分别连接两次弯曲的弯折点可得两个曲面,一般将此两曲面与模孔锥面或死区界面所围成的区域叫变形区压缩锥,或简称变形区。,b 在变形区中,横向(垂直方向)网格的中心朝前,且越接近模孔弯曲越大,说明中心质点的流速大于外层质点的流速,且差异越接近模孔越大。这是因为:外摩擦影响:外层大,中心小;断面温度分布:一般外层低,
20、中心高;模孔的存在使中心质点的流动阻力小于外层质点。,c 制品的网格也有畸变,表现在:横向线的弯曲程度以及弯曲顶点的间距由前向后逐渐增大,说明变形(延伸变形和剪切变形)由前向后逐渐增大。中心网格变成近似矩形,外层网格变成平行四边形,说明外层质点不仅承受了纵向延伸,还承受了附加的剪切变形,且剪切变形由中心向外层逐渐增大。,变形规律总结:径向上:外层大,中心小;轴向上:后端大,前端小;变形差异:由前向后逐渐增加;流动速度:中心大,外层小;总体看流动平稳(层流)。,d 挤压筒内金属分区,前端难变形区 又称死区,位于筒、模交界处的环形区域,是由于筒、模的摩擦和冷却,使此部分金属不易变形形成的。死区在基
21、本挤压阶段基本不参与流动。,死区的顶部能阻碍锭坯的表面缺陷进入变形区而流入制品,因此能提高制品的表面质量。影响死区大小的因素:模角、摩擦、挤压温度等,随这些参数的增大,死区增大,如平模挤压时死区大。,后端难变形区 位于垫片端面附近,是由于筒、垫片的摩擦和冷却,使此部分金属不易变形形成的,在基本挤压末期,此区域逐渐变成一小楔形区。,在变形区中,有一个剧烈滑移区,处于死区和快速流动区之间。变形越不均匀,此区越大,因此随挤压过程的进行,此区不断扩大。剧烈滑移会导致晶粒过渡破碎,易导致制品表面出现微裂纹和组织粗大(粗晶环),导致制品性能下降。,(3)终了挤压阶段 筒内锭坯长度减小到接近变形区高度时的流
22、动阶段。,主要特征:A 挤压力升高;(死区参与流动、温度低)B 金属径向流速增加,金属环流(紊流)(维持体积不变规律)。实际生产中,在此阶段停止挤压(留压余)。,挤压铸造生产工艺过程:,合理选择工艺参数,4.2.4 爆炸焊接技术,金属爆炸焊接是介于金属物理学、爆炸物理学和焊接工艺学之间的一门边缘学科,爆炸焊接又是用炸药作能源进行金属间焊接和生产金属复合材料的一种很有实用价值的高新技术。它的最大特点是在一瞬间能将相同的、特别是不同的和任意的金属组合,简单、迅速和强固地焊接在一起。它的最大用途是制造大面积的各种组合、各种形状、各种尺寸和各种用途的双金属及多金属复合材料。这种技术还是一种先进的表面工
23、程技术,这类材料也是一类应用广泛的表面工程材料。,爆炸焊接法是利用炸药爆炸产生的强大脉冲应力,通过使碰撞的材料发生塑性变形、粘接处金属的局部扰动以及热过程使材料焊接起来。如果用金属丝作增强材料,应将其固定或编织好以防其移位或卷曲。基体和金属丝在焊前必须除去表面的氧化膜和污物。爆炸焊接用底座对材料质量的优劣起着重要作用,底座材料的密度和隔声性能应尽可能与复合材料接近。用放在碎石层或铁屑层上的金属板作底座可得到高质量的平整的复合板。,爆炸焊接的特点是作用时间短,材料的温度低,不必担心发生界面反应。用爆炸焊接可以制造形状复杂的零件和大尺寸的板材,需要时一次作业可得多块复合板。此法主要用来制造金属层合
24、板和金属时增强金属基复合材料,例如钢丝增强铝、钼丝或钨丝增强钛、钨丝增强镍等复合材料。,爆炸加工技术在宇航、军工、化工等方面都有着广泛的应用。例如:宇宙火箭上各种形状的大型铝制舱壁、压力容器上的圆盖、锅炉的顶盖,热交换器的凸状通风板以及铝制大型反射器等,都用得着爆炸成形技术,对于形状不对称的的工件加工,诸如电缆连接、银盘、铜盘或人像与图像的雕撰等,尤见长处。更美妙的是利用爆炸办法可以把石墨碳粉在高压下变成金刚石粉。,国产太行战机用涡轮风扇航空发动机,4.3 液态制造技术,液态制造技术是金属基复合材料主要的制造技术,4.3.1 真空压力浸渍技术,真空压力浸渍法是在真空和高压惰性气体共同作用下,将
25、液态金属压入增强材料中制成预制件,再制备金属基复合材料制品。其兼备真空吸铸和压力铸造的优点。该技术由美国的Alcon公司于1960年最先发明,经过不断改进,逐步发展成能控制熔体温度、顶制件温度、冷却速度、压力等工艺参数的工业性制造方法。,熔体进入预制件有三种方式:,底部压入式,顶部注入式,顶部压入式,浸渍炉由耐高压的壳体、熔化金属的加热炉、顶制件预热炉、坩埚升降装置、真空系统、控制系统、气体加压系统和冷却系统组成。金属熔化过程和预制件预热过程可在真空或保护气氛条件下进行,以防止金属氧化和增强材料损伤。,1、工艺过程,首先将增强材料预制件放入模具,并将基体金属装入坩埚中;然后将装有预制件的模具和
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 金属 复合材料 制造 技术
链接地址:https://www.31ppt.com/p-6377929.html