计量经济学课件9时间序列经济学模型.ppt
《计量经济学课件9时间序列经济学模型.ppt》由会员分享,可在线阅读,更多相关《计量经济学课件9时间序列经济学模型.ppt(106页珍藏版)》请在三一办公上搜索。
1、1,第九章 时间序列计量经济学模型,时间序列的平稳性及其检验随机时间序列分析模型协整分析与误差修正模型,2,9.1 时间序列的平稳性及其检验,一、问题的引出:非平稳变量与经典回归模型二、时间序列数据的平稳性三、平稳性的图示判断四、平稳性的单位根检验五、单整、趋势平稳与差分平稳随机过程,3,常见的数据类型,到目前为止,经典计量经济模型常用到的数据有:时间序列数据(time-series data)截面数据(cross-sectional data)平行/面板数据(panel data/time-series cross-section data)时间序列数据是最常见,也是最常用到的数据,一、问题
2、的引出:非平稳变量与经典回归模型,经典回归分析暗含着一个重要假设:数据是平稳的。数据非平稳,大样本下的统计推断基础“一致性”要求被破坏。经典回归分析的假设之一:解释变量X是非随机变量,经典回归模型与数据的平稳性,4,放宽该假设:X是随机变量,则需进一步要求:(1)X与随机扰动项 不相关Cov(X,)=0(2)依概率收敛:第(1)条是OLS估计的需要第(2)条是为了满足统计推断中 大样本下的“一致性”特性:,注意:在双变量模型中:因此:如果X是非平稳数据(如表现出向上的趋势),则(2)不成立,回归估计量不满足“一致性”,基于大样本的统计推断也就遇到麻烦。,5,表现在:两个本来没有任何因果关系的变
3、量,却有很高的相关性(有较高的R2)。例如:如果有两列时间序列数据表现出一致的变化趋势(非平稳的),即使它们没有任何有意义的关系,但进行回归也可表现出较高的可决系数。在现实经济生活中,实际的时间序列数据往往是非平稳的,而且主要的经济变量如消费、收入、价格往往表现为一致的上升或下降。这样,仍然通过经典的因果关系模型进行分析,一般不会得到有意义的结果。,数据非平稳,往往导致出现“虚假回归”问题,时间序列分析模型方法就是在这样的情况下,以通过揭示时间序列自身的变化规律为主线而发展起来的全新的计量经济学方法论。时间序列分析已组成现代计量经济学的重要内容,并广泛应用于经济分析与预测当中。,6,定义:假定
4、某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列Xt(t=1,2,)的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:1)均值E(Xt)=是与时间t 无关的常数;2)方差Var(Xt)=2是与时间t 无关的常数;3)协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关,与时间t 无关的常数;则称该随机时间序列是平稳的(stationary),而该随机过程是一平稳随机过程(stationary stochastic process)。,二、时间序列数据的平稳性,例一个最简单的随机时间序列是一具有零均值同方差的独立分布序列:Xt=t,tN(0
5、,2)该序列常被称为是一个白噪声(white noise)。由于Xt 具有相同的均值与方差,且协方差为零,由定义,一个白噪声序列是平稳的。,7,例另一个简单的随机时间列序被称为随机游走(random walk),该序列由如下随机过程生成:X t=Xt-1+t 这里,t是一个白噪声。容易知道该序列有相同的均值:E(Xt)=E(Xt-1)为了检验该序列是否具有相同的方差,可假设Xt的初值为X0,则易知:X1=X0+1 X2=X1+2=X0+1+2 Xt=X0+1+2+t 由于X0为常数,t是一个白噪声,因此:Var(Xt)=t2 即Xt的方差与时间t有关而非常数,它是一个非平稳的 序列。,8,9.
6、2中将证明:只有当-11时,该随机过程才是平稳的。1阶自回归过程AR(1)又是如下k阶自回归AR(k)过程的特例:Xt=1Xt-1+2Xt-2+kXt-k该随机过程平稳性条件将在第二节中介绍。,然而,对X取一阶差分(first difference):Xt=Xt-Xt-1=t由于t是一个白噪声,则序列Xt是平稳的。后面将会看到:如果一个时间序列是非平稳的,它常常可通过取差分的方法而形成平稳序列。事实上,随机游走过程是下面我们称之为1阶自回归AR(1)过程的特例:Xt=Xt-1+t 不难验证:1)|1时,该随机过程生成的时间序列是发散的,表现为持续上升(1)或持续下降(-1),因此是非平稳的;2
7、)=1时,是一个随机游走过程,也是非平稳的。,9,给出一个随机时间序列,首先可通过该序列的时间路径图来粗略地判断它是否是平稳的。一个平稳的时间序列在图形上往往表现出一种围绕其均值不断波动的过程。而非平稳序列则往往表现出在不同的时间段具有不同的均值(如持续上升或持续下降)。,三、平稳性检验的图示判断,10,进一步的判断:检验样本自相关函数及其图形定义随机时间序列的自相关函数(auto correlation function,ACF)如下:k=k/0 自相关函数是关于滞后期k的递减函数(Why?)。实际上,对一个随机过程只有一个实现(样本),因此,只能计算样本自相关函数。(Sample auto
8、correlation function)一个时间序列的样本自相关函数定义为下式:易知,随着k的增加,样本自相关函数下降且趋于零。但从下降速度来看,平稳序列要比非平稳序列快得多。,11,也可检验对所有k0,自相关系数都为0的联合假设,这可通过有面的QLB统计量进行:,注意:确定样本自相关函数rk某一数值是否足够接近于0是非常有用的,因为它可检验对应的自相关函数k的真值是否为0的假设。Bartlett曾证明:如果时间序列由白噪声过程生成,则对所有的k0,样本自相关系数近似地服从以0为均值,1/n 为方差的正态分布,其中n为样本数。,该统计量近似地服从自由度为m的2分布(m为滞后长度)。因此:如果
9、计算的Q值大于显著性水平为的临界值,则有1-的把握拒绝所有k(k0)同时为0的假设。,例9.1.3:表序列Random-1是通过一随机过程(随机函数)生成的有19个样本的随机时间序列。,13,容易验证:该样本序列的均值为0,方差为0.0789。从图形看:它在其样本均值0附近上下波动,且样本自相关系数迅速下降到0,随后在0附近波动且逐渐收敛于0。,14,由于该序列由一随机过程生成,可以认为不存在序列相关性,因此该序列为一白噪声。根据Bartlett的理论:kN(0,1/19),因此任一rk(k0)的95%的置信区间都将是:,可以看出:k0时,rk的值确实落在了该区间内,因此可以接受k(k0)为0
10、的假设。同样地,从QLB统计量的计算值看,滞后17期的计算值为26.38,未超过5%显著性水平的临界值27.58,因此,可以接受所有的自相关系数k(k0)都为0的假设。因此,该随机过程是一个平稳过程。,15,图形表示出:该序列具有相同的均值,但从样本自相关图看,虽然自相关系数迅速下降到0,但随着时间的推移,则在0附近波动且呈发散趋势。样本自相关系数显示:r1=0.48,落在了区间-0.4497,0.4497之外,因此在5%的显著性水平上拒绝1的真值为0的假设。该随机游走序列是非平稳的。,序列Random-2是由一随机游走过程:Xt=Xt-1+t生成的一随机游走时间序列样本。其中,第0项取值为0
11、,t是由Random-1表示的白噪声。,16,例:检验中国支出法GDP时间序列的平稳性。表9.1.2 19782000年中国支出法GDP(单位:亿元),17,图形:表现出了一个持续上升的过程,可初步判断是非平稳的。样本自相关系数:是缓慢下降的,再次表明它的非平稳性。从滞后18期的QLB统计量看:QLB(18)=57.1828.86=2(0.05)拒绝:该时间序列的自相关系数在滞后1期之后的值全部为0的假设。结论:19782000年间中国GDP时间序列是非平稳序列。,18,例 检验2.10中关于人均居民消费与人均国内生产总值这两时间序列的平稳性。,样本自相关图,原图,19,从图形上看:人均居民消
12、费(CPC)与人均国内生产总值(GDPPC)是非平稳的。从滞后14期的QLB统计量看:CPC与GDPPC序列的统计量计算值均为57.18,超过了显著性水平为5%时的临界值23.68。再次表明它们的非平稳性。,就此来说,运用传统的回归方法建立它们的回归方程是无实际意义的。不过,9.3中将看到,如果两个非平稳时间序列是协整的,则传统的回归结果却是有意义的,而这两个时间序列恰是协整的。,20,1、DF检验,随机游走序列:Xt=Xt-1+t是非平稳的,其中t是白噪声。而该序列可看成是随机模型:Xt=Xt-1+t中参数=1时的情形。对式:Xt=Xt-1+t 进行回归,如果确实发现=1,就说随机变量Xt有
13、一个单位根。该式可变成差分形式:Xt=(-1)Xt-1+t=Xt-1+t 检验原式是否存在单位根=1,也可通过对差分形式判断是否有=0。,四、平稳性的单位根检验,一般地:检验一个时间序列Xt的平稳性,可通过检验带有截距项的一阶自回归模型:Xt=+Xt-1+t(*)其中的参数是否小于1。或者:检验其等价变形式:Xt=+Xt-1+t(*)其中的参数是否小于0。在第二节中将证明,(*)式中的参数1或=1时,时间序列是非平稳的;对应于(*)式,则是0或=0。因此,针对式:Xt=+Xt-1+t 我们关心的检验为:零假设 H0:=0。备择假设 H1:0,21,因此,可通过OLS法估计:Xt=+Xt-1+t
14、 并计算t统计量的值,与DF分布表中给定显著性水平下的临界值比较:如果:t临界值,则拒绝零假设H0:=0,接受备择假设H1认为时间序列不存在单位根,是平稳的。注意:在不同的教科书上有不同的描述,但是结果是相同的。例如:“如果计算得到的t统计量的绝对值大于临界值的绝对值,则拒绝=0”的假设,原序列不存在单位根,为平稳序列。,上述检验可通过OLS法下的t检验完成。然而,在零假设(序列非平稳)下,即使在大样本下t统计量也是有偏误的(向下偏倚),通常的t 检验无法使用。Dicky和Fuller于1976年提出了这一情形下t 统计量服从的分布(这时的t 统计量称为 统计量),即DF分布(见表)。由于t
15、统计量的向下偏倚性,它呈现围绕小于零值的偏态分布。,22,问题的提出:在利用Xt=+Xt-1+t对时间序列进行平稳性检验中,实际上假定了时间序列是由具有白噪声随机误差项的一阶自回归过程AR(1)生成的。但在实际检验中,时间序列可能由更高阶的自回归过程生成的,或者随机误差项并非是白噪声,这样用OLS法进行估计均会表现出随机误差项出现自相关(autocorrelation),导致DF检验无效。,2、ADF检验,另外,如果时间序列包含有明显的随时间变化的某种趋势(如上升或下降),则也容易导致上述检验中的自相关随机误差项问题。为了保证DF检验中随机误差项的白噪声特性,Dicky和Fuller对DF检验
16、进行了扩充,形成了ADF(Augment Dickey-Fuller)检验。,23,实际检验时从模型3开始,然后模型2、模型1。何时检验拒绝零假设,即原序列不存在单位根,为平稳序列,何时检验停止。否则,就要继续检验,直到检验完模型1为止。检验原理与DF检验相同,只是对模型1、2、3进行检验时,有各自相应的临界值。表给出了三个模型所使用的ADF分布临界值表。,模型3 中的t是时间变量,代表了时间序列随时间变化的某种趋势(如果有的话)。模型1与另两模型的差别在于是否包含有常数项和趋势项。检验的假设都是:针对H1:0,检验 H0:=0,即存在一单位根,ADF检验是通过下面三个模型完成的:,24,表:
17、不同模型使用的ADF分布临界值表,25,同时估计出上述三个模型的适当形式,然后通过ADF临界值表检验零假设H0:=0。1)只要其中有一个模型的检验结果拒绝了零假设,就可以认为时间序列是平稳的;2)当三个模型的检验结果都不能拒绝零假设时,则认为时间序列是非平稳的。这里所谓模型适当的形式就是在每个模型中选取适当的滞后差分项,以使模型的残差项是一个白噪声(主要保证不存在自相关)。,一个简单的检验过程:,26,通过拉格朗日乘数检验(Lagrange multiplier test)对随机误差项的自相关性进行检验:LM(1)=0.92,LM(2)=4.16,,小于5%显著性水平下自由度分别为1与2的2分
18、布的临界值,可见不存在自相关性,因此该模型的设定是正确的。从 的系数看,|t|临界值的绝对值,接受原假设H0:=0,不能拒绝存在单位根的零假设。时间T的t统计量小于ADF分布表中的临界值,因此不能拒绝不存在趋势项的零假设。需进一步检验模型2。,例 检验19782000年间中国支出法GDP序列的平稳性。1)经过偿试,模型3取了2阶滞后:模型3:GDPt=-1011.33+229.27t+0.0093GDPt-1+1.50GDPt-1-1.01GDPt-2(-1.26)(1.91)(0.31)(8.94)(-4.95)LM(1)=0.92 LM(2)=4.16,27,LM检验表明模型残差不存在自相
19、关性,因此该模型的设定是正确的。从GDPt-1的参数值看,其t统计量为正值,大于临界值,不能拒绝存在单位根的零假设。常数项的t 统计量小于ADF分布表中的临界值,不能拒绝不存常数项的零假设。需进一步检验模型1。,2)经试验,模型2中滞后项取2阶:模型2:GDPt=357.45+0.057GDPt-1+1.65GDPt-1-1.15GDPt-2(-0.90)(3.38)(10.40)(-5.63)LM(1)=0.57 LM(2)=2.85,3)经试验,模型1中滞后项取2阶:模型1:GDPt=0.063GDPt-1+1.701GDPt-1-1.194GDPt-2(4.15)(11.46)(-6.0
20、5)LM(1)=0.17 LM(2)=2.67 LM检验表明模型残差项不存在自相关性,因此模型的设定是正确的。从GDPt-1的参数值看,其t 统计量为正值,大于临界值,不能拒绝存在单位根的零假设。可以断定中国支出法GDP时间序列是非平稳的。,28,例 检验2.10中关于人均居民消费与人均国内生产总值这两时间序列的平稳性。1)对中国人均国内生产总值GDPPC来说,经过偿试,三个模型的适当形式分别为:,三个模型中参数的估计值的t 统计量均大于各自的临界值,因此不能拒绝存在单位根的零假设。结论:人均国内生产总值(GDPPC)是非平稳的。,模型3:GDPPCtt-1+1.03GDPPCt-1(-0.7
21、5)(1.93)(-1.04)(2.31)LM(1)=2.88 LM(2)=1.86,模型2GDPPCt=-192.02+0.652GDPPCt-1+0.040GDPPCt-1-1.425GDPPCt-2(-1.78)(3.26)(0.08)(-2.96)-0.412GDPPCt-3-1.403GDPPCt-4(-0.67)(-2.20)LM(1)=1.67 LM(2)=1.71 LM(3)=6.28 LM(4)=10.92,模型1:GDPPCt=0.196GDPPCt-1+0.875GDPPCt-1-0.975GDPPCt-2(2.63)(2.61)(-2.72)LM(1)=0.20 LM(
22、2)=3.53,29,2)对于人均居民消费CPC时间序列来说,三个模型的适当形式为:,三个模型中参数CPCt-1的t 统计量的值均比ADF临界值表中各自的临界值大,不能拒绝该时间序列存在单位根的假设,因此,可判断人均居民消费序列CPC是非平稳的。,模型3:CPCtt-1+1.4627CPCt-1(-0.477)(2.175)(-1.478)(2.318)LM(1)=1.577 LM(2)=1.834,模型2:CPCt=-79.88+0.545CPCt-1+0.508CPCt-1-1.655CPCt-2(-1.37)(3.37)(1.16)(-3.44)-0.027CPCt-3-1.824CPC
23、t-4(-0.05)(-3.03)LM(1)=3.57 LM(2)=4.10 LM(3)=4.89 LM(4)=10.99,模型1:CPCt=0.37CPCt-1+0.88CPCt-1-1.48CPCt-2+0.08CPCt-3-1.71CPCt-4(3.60)(2.37)(-2.97)(0.12)(-2.68)LM(1)=1.83 LM(2)=1.84 LM(3)=2.00 LM(4)=2.33,30,随机游走序列Xt=Xt-1+t 经差分后等价地变形为:Xt=t,由于t是一个白噪声,因此差分后的序列Xt是平稳的。如果一个时间序列经过一次差分变成平稳的,就称原序列是一阶单整(integrat
24、ed of 1)序列,记为I(1)。,1、单整,五、单整、趋势平稳与差分平稳随机过程,一般地,如果一个时间序列经过d次差分后变成平稳序列,则称原序列是d 阶单整(integrated of d)序列,记为I(d)。显然,I(0)代表一平稳时间序列。在现实经济生活中:1)只有少数经济指标的时间序列表现为平稳的,如利率等;2)大多指标的时间序列是非平稳的,如一些价格指数常常是2阶单整的,以不变价格表示的消费额、收入等常表现为1阶单整。3)大多数非平稳的时间序列一般可通过一次或多次差分的形式变为平稳的。但也有一些时间序列,无论经过多少次差分,都不能变为平稳的。这种序列被称为非单整的(non-inte
25、grated)。,31,例 中国支出法GDP的单整性。,经过试算,发现中国支出法GDP是1阶单整的,适当的检验模型为:2GDPtGDPt-1+0.9662GDPt-1(-1.99)(4.23)(-5.18)(6.42)R2=0.7501 LM(1)=0.40 LM(2)=1.29,例 中国人均居民消费与人均GDP的单整性。,经过试算,发现中国人均国内生产总值GDPPC是2阶单整的,适当的检验模型为:3GDPPCt=-0.602GDPPCt-1 t=-2.17 R2=0.2778 LM(1)=0.31 LM(2)=0.54,同样地,CPC也是2阶单整的,适当的检验模型为:3CPCt=-0.672
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量 经济学 课件 时间 序列 模型

链接地址:https://www.31ppt.com/p-6376451.html