用二重积分计算旋转体体积的几何解释.ppt
《用二重积分计算旋转体体积的几何解释.ppt》由会员分享,可在线阅读,更多相关《用二重积分计算旋转体体积的几何解释.ppt(28页珍藏版)》请在三一办公上搜索。
1、旋转体体积计算公式的几何意义 1,用二重积分计算旋转体体积的几何解释,龙凤古镇,旋转体体积计算公式的几何意义 2,设D是上半平面内的一个有界闭区域。将D绕x轴旋转一周得一旋转体,求该旋转体的体积V。,我们用元素法来建立旋转体体积的二重积分公式。,D,旋转体体积计算公式的几何意义 3,D,在区域D的(x,y)处取一个面积元素,它到x轴的距离是 y(如图)。,该面积元素绕x轴旋转而成的旋转体的体积约为:,(体积元素),于是整个区域绕x轴旋转而成的旋转体的体积为:,旋转体体积计算公式的几何意义 4,D,命题1:上半平面内一个有界闭区域D绕x轴旋转而成的旋转体的体积为:,旋转体体积计算公式的几何意义
2、5,下面来解释以上公式的几何意义,旋转体体积计算公式的几何意义 6,区域D中一面积元素 绕x轴旋转而成的旋转体为一环形体(如图)。,旋转体体积计算公式的几何意义 7,区域D中一面积元素 绕x轴旋转而成的旋转体为一环形体(如图)。,其体积约为:,(体积元素),旋转体体积计算公式的几何意义 8,将dV在D上二重积分的几何意义是将划分D的n个面积元素分别绕x轴旋转而成的旋转体相加,得到整个D绕x轴旋转的旋转体。,于是整个区域绕x轴旋转而成的旋转体的体积为:,旋转体体积计算公式的几何意义 9,以下图形给出了这种方法的几何解释,旋转体体积计算公式的几何意义 10,旋转体体积计算公式的几何意义 11,di
3、splay(xzhou,yzhou,zzhou,yuan,y00,y02,y04,y06,y08,y0_2,y0_4,y0_6,y0_8,y20,y22,y24,y26,y28,y2_2,y2_4,y2_6,y2_8,y40,y42,y44,y46,y48,y4_2,y4_4,y4_6,y4_8,y60,y62,y64,y66,y6_2,y6_4,y6_6,y80,y82,y84,y8_2,y8_4,y_20,y_22,y_24,y_26,y_28,y_2_2,y_2_4,y_2_6,y_2_8,y_40,y_42,y_44,y_46,y_48,y_4_2,y_4_4,y_4_6,y_4_8,
4、y_60,y_62,y_64,y_66,y_6_2,y_6_4,y_6_6,y_80,y_82,y_84,y_8_2,y_8_4,h00,h_20,h_28,h_2_8,h_44,h_4_4,h_66,h_6_6,h_80,h_84,h_8_4,scaling=constrained,color=green);,旋转体体积计算公式的几何意义 12,display(xzhou,yzhou,zzhou,yuan,y00,y02,y04,y06,y08,y0_2,y0_4,y0_6,y0_8,y20,y22,y24,y26,y28,y2_2,y2_4,y2_6,y2_8,y40,y42,y44,y4
5、6,y48,y4_2,y4_4,y4_6,y4_8,y60,y62,y64,y66,y6_2,y6_4,y6_6,y80,y82,y84,y8_2,y8_4,y_20,y_22,y_24,y_26,y_28,y_2_2,y_2_4,y_2_6,y_2_8,y_40,y_42,y_44,y_46,y_48,y_4_2,y_4_4,y_4_6,y_4_8,y_60,y_62,y_64,y_66,y_6_2,y_6_4,y_6_6,y_80,y_82,y_84,y_8_2,y_8_4,h00,h_20,h_28,h_2_8,h_44,h_4_4,h_66,h_6_6,h_80,h_84,h_8_4,
6、scaling=constrained,color=green);,旋转体体积计算公式的几何意义 13,display(xzhou,yzhou,zzhou,yuan,y00,y02,y04,y06,y08,y0_2,y0_4,y0_6,y0_8,y20,y22,y24,y26,y28,y2_2,y2_4,y2_6,y2_8,y40,y42,y44,y46,y48,y4_2,y4_4,y4_6,y4_8,y60,y62,y64,y66,y6_2,y6_4,y6_6,y80,y82,y84,y8_2,y8_4,y_20,y_22,y_24,y_26,y_28,y_2_2,y_2_4,y_2_6,y
7、_2_8,y_40,y_42,y_44,y_46,y_48,y_4_2,y_4_4,y_4_6,y_4_8,y_60,y_62,y_64,y_66,y_6_2,y_6_4,y_6_6,y_80,y_82,y_84,y_8_2,y_8_4,h00,h_20,h_28,h_2_8,h_44,h_4_4,h_66,h_6_6,h_80,h_84,h_8_4,scaling=constrained,color=green);,旋转体体积计算公式的几何意义 14,旋转体体积计算公式的几何意义 15,设想用电缆做成一个圆环体那么这个圆环体可由电缆中很多圆环形状的光纤组成因此,我们可以把这种计算旋转体体积的
8、方法形象地称为光纤法或电缆法,旋转体体积计算公式的几何意义 16,更多的图形,旋转体体积计算公式的几何意义 17,旋转体体积计算公式的几何意义 18,旋转体体积计算公式的几何意义 19,with(plots):xzhou:=spacecurve(x,0,0,x=-2.2,thickness=1,color=black):yzhou:=spacecurve(0,y,0,y=-2.2,thickness=1,color=black):zzhou:=spacecurve(0,0,z,z=-2.4,thickness=1,color=black):a:=0:b:=3:R:=1:r:=0.1:yuan:
9、=spacecurve(0,a+R*cos(t),b+R*sin(t),t=0.2*Pi,thickness=3,color=red):a0:=0:a2:=0.2:a4:=0.4:a6:=0.6:a8:=0.8:a_2:=-0.2:a_4:=-0.4:a_6:=-0.6:a_8:=-0.8:b0:=3:b2:=3.2:b4:=3.4:b6:=3.6:b8:=3.8:b_2:=3-0.2:b_4:=3-0.4:b_6:=3-0.6:b_8:=3-0.8:y00:=spacecurve(0,a0+r*cos(t),b0+r*sin(t),t=0.2*Pi,color=blue):y02:=spac
10、ecurve(0,a0+r*cos(t),b2+r*sin(t),t=0.2*Pi,color=blue):y04:=spacecurve(0,a0+r*cos(t),b4+r*sin(t),t=0.2*Pi,color=blue):y06:=spacecurve(0,a0+r*cos(t),b6+r*sin(t),t=0.2*Pi,color=blue):y08:=spacecurve(0,a0+r*cos(t),b8+r*sin(t),t=0.2*Pi,color=blue):y0_2:=spacecurve(0,a0+r*cos(t),b_2+r*sin(t),t=0.2*Pi,colo
11、r=blue):y0_4:=spacecurve(0,a0+r*cos(t),b_4+r*sin(t),t=0.2*Pi,color=blue):y0_6:=spacecurve(0,a0+r*cos(t),b_6+r*sin(t),t=0.2*Pi,color=blue):y0_8:=spacecurve(0,a0+r*cos(t),b_8+r*sin(t),t=0.2*Pi,color=blue):y20:=spacecurve(0,a2+r*cos(t),b0+r*sin(t),t=0.2*Pi,color=blue):y22:=spacecurve(0,a2+r*cos(t),b2+r
12、*sin(t),t=0.2*Pi,color=blue):y24:=spacecurve(0,a2+r*cos(t),b4+r*sin(t),t=0.2*Pi,color=blue):y26:=spacecurve(0,a2+r*cos(t),b6+r*sin(t),t=0.2*Pi,color=blue):y28:=spacecurve(0,a2+r*cos(t),b8+r*sin(t),t=0.2*Pi,color=blue):y2_2:=spacecurve(0,a2+r*cos(t),b_2+r*sin(t),t=0.2*Pi,color=blue):y2_4:=spacecurve(
13、0,a2+r*cos(t),b_4+r*sin(t),t=0.2*Pi,color=blue):y2_6:=spacecurve(0,a2+r*cos(t),b_6+r*sin(t),t=0.2*Pi,color=blue):y2_8:=spacecurve(0,a2+r*cos(t),b_8+r*sin(t),t=0.2*Pi,color=blue):y40:=spacecurve(0,a4+r*cos(t),b0+r*sin(t),t=0.2*Pi,color=blue):y42:=spacecurve(0,a4+r*cos(t),b2+r*sin(t),t=0.2*Pi,color=bl
14、ue):y44:=spacecurve(0,a4+r*cos(t),b4+r*sin(t),t=0.2*Pi,color=blue):y46:=spacecurve(0,a4+r*cos(t),b6+r*sin(t),t=0.2*Pi,color=blue):y48:=spacecurve(0,a4+r*cos(t),b8+r*sin(t),t=0.2*Pi,color=blue):y4_2:=spacecurve(0,a4+r*cos(t),b_2+r*sin(t),t=0.2*Pi,color=blue):y4_4:=spacecurve(0,a4+r*cos(t),b_4+r*sin(t
15、),t=0.2*Pi,color=blue):y4_6:=spacecurve(0,a4+r*cos(t),b_6+r*sin(t),t=0.2*Pi,color=blue):y4_8:=spacecurve(0,a4+r*cos(t),b_8+r*sin(t),t=0.2*Pi,color=blue):y60:=spacecurve(0,a6+r*cos(t),b0+r*sin(t),t=0.2*Pi,color=blue):y62:=spacecurve(0,a6+r*cos(t),b2+r*sin(t),t=0.2*Pi,color=blue):y64:=spacecurve(0,a6+
16、r*cos(t),b4+r*sin(t),t=0.2*Pi,color=blue):y66:=spacecurve(0,a6+r*cos(t),b6+r*sin(t),t=0.2*Pi,color=blue):y6_2:=spacecurve(0,a6+r*cos(t),b_2+r*sin(t),t=0.2*Pi,color=blue):y6_4:=spacecurve(0,a6+r*cos(t),b_4+r*sin(t),t=0.2*Pi,color=blue):y6_6:=spacecurve(0,a6+r*cos(t),b_6+r*sin(t),t=0.2*Pi,color=blue):
17、y80:=spacecurve(0,a8+r*cos(t),b0+r*sin(t),t=0.2*Pi,color=blue):y82:=spacecurve(0,a8+r*cos(t),b2+r*sin(t),t=0.2*Pi,color=blue):y84:=spacecurve(0,a8+r*cos(t),b4+r*sin(t),t=0.2*Pi,color=blue):y8_2:=spacecurve(0,a8+r*cos(t),b_2+r*sin(t),t=0.2*Pi,color=blue):y8_4:=spacecurve(0,a8+r*cos(t),b_4+r*sin(t),t=
18、0.2*Pi,color=blue):y8_6:=spacecurve(0,a8+r*cos(t),b_6+r*sin(t),t=0.2*Pi,color=blue):y_20:=spacecurve(0,a_2+r*cos(t),b0+r*sin(t),t=0.2*Pi,color=blue):y_22:=spacecurve(0,a_2+r*cos(t),b2+r*sin(t),t=0.2*Pi,color=blue):y_24:=spacecurve(0,a_2+r*cos(t),b4+r*sin(t),t=0.2*Pi,color=blue):y_26:=spacecurve(0,a_
19、2+r*cos(t),b6+r*sin(t),t=0.2*Pi,color=blue):y_28:=spacecurve(0,a_2+r*cos(t),b8+r*sin(t),t=0.2*Pi,color=blue):y_2_2:=spacecurve(0,a_2+r*cos(t),b_2+r*sin(t),t=0.2*Pi,color=blue):y_2_4:=spacecurve(0,a_2+r*cos(t),b_4+r*sin(t),t=0.2*Pi,color=blue):y_2_6:=spacecurve(0,a_2+r*cos(t),b_6+r*sin(t),t=0.2*Pi,co
20、lor=blue):y_2_8:=spacecurve(0,a_2+r*cos(t),b_8+r*sin(t),t=0.2*Pi,color=blue):y_40:=spacecurve(0,a_4+r*cos(t),b0+r*sin(t),t=0.2*Pi,color=blue):y_42:=spacecurve(0,a_4+r*cos(t),b2+r*sin(t),t=0.2*Pi,color=blue):y_44:=spacecurve(0,a_4+r*cos(t),b4+r*sin(t),t=0.2*Pi,color=blue):y_46:=spacecurve(0,a_4+r*cos
21、(t),b6+r*sin(t),t=0.2*Pi,color=blue):y_48:=spacecurve(0,a_4+r*cos(t),b8+r*sin(t),t=0.2*Pi,color=blue):y_4_2:=spacecurve(0,a_4+r*cos(t),b_2+r*sin(t),t=0.2*Pi,color=blue):y_4_4:=spacecurve(0,a_4+r*cos(t),b_4+r*sin(t),t=0.2*Pi,color=blue):y_4_6:=spacecurve(0,a_4+r*cos(t),b_6+r*sin(t),t=0.2*Pi,color=blu
22、e):y_4_8:=spacecurve(0,a_4+r*cos(t),b_8+r*sin(t),t=0.2*Pi,color=blue):y_60:=spacecurve(0,a_6+r*cos(t),b0+r*sin(t),t=0.2*Pi,color=blue):y_62:=spacecurve(0,a_6+r*cos(t),b2+r*sin(t),t=0.2*Pi,color=blue):y_64:=spacecurve(0,a_6+r*cos(t),b4+r*sin(t),t=0.2*Pi,color=blue):y_66:=spacecurve(0,a_6+r*cos(t),b6+
23、r*sin(t),t=0.2*Pi,color=blue):y_6_2:=spacecurve(0,a_6+r*cos(t),b_2+r*sin(t),t=0.2*Pi,color=blue):y_6_4:=spacecurve(0,a_6+r*cos(t),b_4+r*sin(t),t=0.2*Pi,color=blue):y_6_6:=spacecurve(0,a_6+r*cos(t),b_6+r*sin(t),t=0.2*Pi,color=blue):y_80:=spacecurve(0,a_8+r*cos(t),b0+r*sin(t),t=0.2*Pi,color=blue):y_82
24、:=spacecurve(0,a_8+r*cos(t),b2+r*sin(t),t=0.2*Pi,color=blue):y_84:=spacecurve(0,a_8+r*cos(t),b4+r*sin(t),t=0.2*Pi,color=blue):y_8_2:=spacecurve(0,a_8+r*cos(t),b_2+r*sin(t),t=0.2*Pi,color=blue):y_8_4:=spacecurve(0,a_8+r*cos(t),b_4+r*sin(t),t=0.2*Pi,color=blue):y_8_6:=spacecurve(0,a_8+r*cos(t),b_6+r*s
25、in(t),t=0.2*Pi,color=blue):h00:=plot3d(b0+r*cos(t)*sin(u),a0+r*sin(t),(b0+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h02:=plot3d(b2+r*cos(t)*sin(u),a0+r*sin(t),(b2+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h04:=plot3d(b4+r*cos(t)*sin(u),a0+r*sin(t),(b4+r*cos(t)*cos(u),t=0.2*Pi,u=0.2*Pi):h06:=plot3d(b6+r*cos(t)*sin
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二重积分 计算 旋转体 体积 几何 解释
链接地址:https://www.31ppt.com/p-6370037.html