概率图模型导论-概率论与图论相结合.ppt
《概率图模型导论-概率论与图论相结合.ppt》由会员分享,可在线阅读,更多相关《概率图模型导论-概率论与图论相结合.ppt(30页珍藏版)》请在三一办公上搜索。
1、第十讲 概率图模型导论 Chapter 10 Introduction to Probabilistic Graphical Models,Weike Pan,and Congfu XuInstitute of Artificial Intelligence College of Computer Science,Zhejiang UniversityOctober 12,2006,浙江大学计算机学院人工智能引论课件,References,An Introduction to Probabilistic Graphical Models.Michael I.Jordan.http:/www.c
2、s.berkeley.edu/jordan/graphical.html,Outline,PreparationsProbabilistic Graphical Models(PGM)Directed PGMUndirected PGMInsights of PGM,Outline,PreparationsPGM“is”a universal modelDifferent thoughts of machine learningDifferent training approachesDifferent data typesBayesian FrameworkChain rules of pr
3、obability theoryConditional IndependenceProbabilistic Graphical Models(PGM)Directed PGMUndirected PGMInsights of PGM,Different thoughts of machine learning,Statistics(modeling uncertainty,detailed information)vs.Logics(modeling complexity,high level information)Unifying Logical and Statistical AI.Pe
4、dro Domingos,University of Washington.AAAI 2006.Speech:Statistical information(Acoustic model+Language model+Affect model)+High level information(Expert/Logics),Different training approaches,Maximum Likelihood Training:MAP(Maximum a Posteriori)vs.Discriminative Training:Maximum Margin(SVM)Speech:cla
5、ssical combination Maximum Likelihood+Discriminative Training,Different data types,Directed acyclic graph(Bayesian Networks,BN)Modeling asymmetric effects and dependencies:causal/temporal dependence(e.g.speech analysis,DNA sequence analysis)Undirected graph(Markov Random Fields,MRF)Modeling symmetri
6、c effects and dependencies:spatial dependence(e.g.image analysis),PGM“is”a universal model,To model both temporal and spatial data,by unifyingThoughts:Statistics+LogicsApproaches:Maximum Likelihood Training+Discriminative Training Further more,the directed and undirected models together provide mode
7、ling power beyond that which could be provided by either alone.,Bayesian Framework,What we care is the conditional probability,and its is a ratio of two marginal probabilities.,A posteriori probability,Likelihood,Priori probability,Class i,Normalization factor,Observation,Problem description Observa
8、tion Conclusion(classification or prediction),Bayesian rule,Chain rules of probability theory,Conditional Independence,Outline,PreparationsProbabilistic Graphical Models(PGM)Directed PGMUndirected PGMInsights of PGM,PGM,Nodes represent random variables/statesThe missing arcs represent conditional in
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率 模型 导论 概率论 相结合

链接地址:https://www.31ppt.com/p-6365691.html