同济六版高等数学第一章第二节课件.ppt
《同济六版高等数学第一章第二节课件.ppt》由会员分享,可在线阅读,更多相关《同济六版高等数学第一章第二节课件.ppt(21页珍藏版)》请在三一办公上搜索。
1、一、数列极限的定义,二、收敛数列的性质,1.2 数列的极限,上页,下页,铃,结束,返回,首页,一、数列极限的定义,引例,刘徽割圆术,割之弥细,所失弥小,割之又割,以至于不可割,则与圆合体而无所失矣。,刘徽(约225 295年),我国古代魏末晋初的杰出数学家.,他撰写的重,差对九章算术中的方法和公式作了全面的评,注,指出并纠正了其中的错误,在数学方法和数学,理论上作出了杰出的贡献.,他的“割圆术”求圆周率,的方法:,一、数列极限的定义,引例,用圆内接正多边形的面积近似圆的面积S.,下页,A1,A2,A3,A1表示圆内接正6边形面积,A2表示圆内接正12边形面积,A3表示圆内接正24边形面积,An
2、表示圆内接正62n-1边形面积,.,显然n越大,An,因此,需要考虑当n时,An的变化趋势.,越接近于S.,数列,如果按照某一法则,对每一nN,对应着一个确定的实数xn,则得到一个序列 x1,x2,x3,xn,这一序列叫做数列,记为xn,其中第n项xn叫做数列的一般项.,下页,数列举例:,2,4,8,2n,;,1,-1,1,(-1)n+1,.,数列xn可以看作数轴上的一个动点,它依次取数轴上的点x1,x2,x3,xn,.,数列的几何意义,数列,如果按照某一法则,对每一nN,对应着一个确定的实数xn,则得到一个序列 x1,x2,x3,xn,这一序列叫做数列,记为xn,其中第n项xn叫做数列的一般
3、项.,下页,数列xn可以看作自变量为正整数n的函数:xn=f(n),nN.,数列与函数,数列,如果按照某一法则,对每一nN,对应着一个确定的实数xn,则得到一个序列 x1,x2,x3,xn,这一序列叫做数列,记为xn,其中第n项xn叫做数列的一般项.,下页,例如,当n无限增大时,如果数列xn的一般项xn无限接近于常数a,则常数a称为数列xn的极限,或称数列xn收敛a,记为,下页,数列极限的通俗定义,当n无限增大时,xn无限接近于a.当n无限增大时,|xn-a|无限接近于0.当n无限增大时,|xn-a|可以任意小,要多小就能有多小.当n增大到一定程度以后,|xn-a|能小于事先给定的任意小的正数
4、.,分析,因此,如果 n 增大到一定程度以后,|xn-a|能小于事先给定的任意小的正数,则当n无限增大时,xn无限接近于常数a.,当n无限增大时,如果数列xn的一般项xn无限接近于常数a,则数列xn收敛a.,下页,数列极限的精确定义,设xn为一数列 如果存在常数a 对于任意给定的正数e 总存在正整数N 使得当nN 时 不等式|xna|e都成立 则称常数a是数列xn的极限 或者称数列xn收敛于a 记为,如果不存在这样的常数a 就说数列xn没有极限,下页,0,NN 当nN时 有|xna|.,极限定义的简记形式,数列极限的几何意义,0,NN 当nN时 有|xna|.,下页,存在 NN 当nN时 点x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 同济 高等数学 第一章 第二 课件
链接地址:https://www.31ppt.com/p-6362665.html