高三数学理创新设计资料包.ppt
《高三数学理创新设计资料包.ppt》由会员分享,可在线阅读,更多相关《高三数学理创新设计资料包.ppt(48页珍藏版)》请在三一办公上搜索。
1、最新考纲1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.,第5讲椭 圆,1椭圆的定义在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做_这两定点叫做椭圆的_,两焦点间的距离叫做椭圆的_集合PM|MF1|MF2|2a,|F1F2|2c,其中a0,c0,且a,c为常数:(1)若_,则集合P为椭圆;(2)若_,则集合P为线段;(3)若_,则集合P为空集,知 识 梳 理,椭圆,焦点,焦距,ac,ac,ac,2椭圆的标准方程和几何性质,2a,2b,2c,(0,1),a2b2,1判断正误(在括号内打“”
2、或“”)精彩PPT展示(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆()(2)椭圆的离心率e越大,椭圆就越圆()(3)方程mx2ny21(m0,n0,mn)表示的曲线是椭圆()(4)椭圆上一点P与两焦点F1,F2构成PF1F2的周长为2a2c(其中a为椭圆的长半轴长,c为椭圆的半焦距)(),诊 断 自 测,答案A,答案D,4如果方程x2ky22表示焦点在y轴上的椭圆,那么实数k的取值范围是_答案(0,1),考点一椭圆的定义及其应用【例1】(1)(2015枣庄模拟)如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为C
3、D,设CD与OM交于点P,则点P的轨迹是()A椭圆 B双曲线 C抛物线 D圆,解析(1)由条件知|PM|PF|.|PO|PF|PO|PM|OM|R|OF|.P点的轨迹是以O,F为焦点的椭圆|PF1|2|PF2|2|F1F2|24c2,(|PF1|PF2|)22|PF1|PF2|4c2,2|PF1|PF2|4a24c24b2.|PF1|PF2|2b2,b3.答案(1)A(2)3,规律方法椭圆定义的应用主要有两个方面:一是确认平面内与两定点有关的轨迹是否为椭圆;二是当P在椭圆上时,与椭圆的两焦点F1,F2组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求|PF1|PF2
4、|;通过整体代入可求其面积等,A6 B5C4 D3(2)(2015保定一模)与圆C1:(x3)2y21外切,且与圆C2:(x3)2y281内切的动圆圆心P的轨迹方程为_,两式相加得|AB|AF1|BF1|16,即AF1B周长为16,又因为在AF1B中,有两边之和是10,所以第三边长度为16106.选A.(2)设动圆的半径为r,圆心为P(x,y),则有|PC1|r1,|PC2|9r.所以|PC1|PC2|10|C1C2|,即P在以C1(3,0),C2(3,0)为焦点,长轴长为10的椭圆上,,考点二求椭圆的标准方程(3)已知椭圆的长轴长是短轴长的3倍,且过点A(3,0),并且以坐标轴为对称轴,则椭
5、圆的标准方程为_,规律方法根据条件求椭圆方程常用的主要方法是定义法和待定系数法定义法的要点是根据题目所给条件确定动点的轨迹满足椭圆的定义,待定系数法的要点是根据题目所给的条件确定椭圆中的两个系数a,b.,【训练2】求满足下列条件的椭圆的标准方程:,(3)设椭圆方程为mx2ny21(m,n0,mn),,考点三椭圆的几何性质,解析(1)设A(x1,y1),B(x2,y2),且A,B在椭圆上,,规律方法(1)求椭圆的离心率的方法:直接求出a,c来求解e.通过已知条件列出方程组,解出a,c的值;构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高三数 学理 创新 设计 资料
链接地址:https://www.31ppt.com/p-6356429.html