高三数学专题复习课件专题16开放性与探究性问题.ppt
《高三数学专题复习课件专题16开放性与探究性问题.ppt》由会员分享,可在线阅读,更多相关《高三数学专题复习课件专题16开放性与探究性问题.ppt(68页珍藏版)》请在三一办公上搜索。
1、第一课时:,范围与轨迹的探究:,课前导引,第一课时:,范围与轨迹的探究:,课前导引,第一课时:,范围与轨迹的探究:,课前导引,B,第一课时:,范围与轨迹的探究:,解析,解析,答案 D,考点搜索,考点搜索,1.探索点的位置及参量的取值范围往往是综合已知条件和所学知识点,根据转化或数形结合的思想进行探索,直到结论显然为止.2.在解决数列和恒成立的问题时,要根据特殊和一般的辩证思想,从特殊的个体总结出一般的规律,对普遍的规律任何个体都会满足.,链接高考,链接高考,例1,链接高考,法一,例1,法二,点评 从特殊的个体考察普遍的规律是高中阶段必须掌握的思维方式,本题先令x=0和x=1得到sin 0,co
2、s 0,大大的缩小了的考察范围,为后面的解答提供的很大的方便.而解法二通过换元,使得式子更为规范.,例2,解析,例3 在棱长为a的正方体ABCDA1B1C1D1中,E、F分别是棱BC、CD上的点,且BECF(1)当E、F在何位置时,B1FD1E;(2)当E、F在何位置时三棱锥C1CEF的体积取得最大值,并求此时二面角C1EFC的大小,解析,点评 立体几何中的点的位置的探求经常借助于空间向量,引入参数,综合已知和结论列出等式,解出参数.这是立体几何中的点的位置的探求的常用方法.,例4,解析,点评 本题是数列探究性问题,往往通过特殊的个体总结出一般的规律:(1)要否定一个结论,只要通过前面几项即可
3、;(2)的证明必须对每一项都要满足,所以要对第一项进行检验.,方法论坛,方法论坛,解决任何一个数学问题都是综合题中的条件和结论运用适当的思维方式进行探究,相对其他的问题更注重思维性,主要有以下的思维方式:1.将题中的已知和结论都看作条件,有机地结合,推导出要证的结论或求出参量的范围.,2.利用特殊和一般,个体和总体的辩证关系,通过个体来发现普遍的规律,再运用数学归纳法加以证明,或根据普遍的规律代入个体中,从而加强题目的条件,这样便于尽快解决问题.,3.对于存在性问题的求解,应先假设存在,再综合题中所给的条件,要么推出存在的范围,要么得出矛盾.若得出矛盾则说明不存在.4.条件或结论开放性问题,应
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 专题 复习 课件 16 开放性 探究性 问题
链接地址:https://www.31ppt.com/p-6356372.html