统计学多元线性回归.ppt
《统计学多元线性回归.ppt》由会员分享,可在线阅读,更多相关《统计学多元线性回归.ppt(141页珍藏版)》请在三一办公上搜索。
1、第三章 经典单方程计量经济学模型:多元线性回归模型Multiple Linear Regression Model,本章内容,多元线性回归模型概述 多元线性回归模型的参数估计 多元线性回归模型的统计检验多元线性回归模型的预测可化为线性的非线性模型受约束回归,3.1 多元线性回归模型概述(Regression Analysis),一、多元线性回归模型二、多元线性回归模型的基本假设,一、多元线性回归模型,多元线性回归模型的形式,由于:在实际经济问题中,一个变量往往受到多个原因变量的影响;“从一般到简单”的建模思路。所以,在线性回归模型中的解释变量有多个,至少开始是这样。这样的模型被称为多元线性回归
2、模型。多元线性回归模型参数估计与一元线性回归模型相同,只是计算更为复杂。,总体回归模型,i=1,2,n,总体回归模型:总体回归函数的随机表达形式,k为解释变量的数目。习惯上,把常数项看成为虚变量的系数,该虚变量的样本观测值始终取1。于是,模型中解释变量的数目为(k+1)。j称为回归系数(regression coefficient)。,总体回归函数:描述在给定解释变量Xi条件下被解释变量Yi的条件均值。,j也被称为偏回归系数(partial regression coefficients),表示在其他解释变量保持不变的情况下,Xj每变化1个单位时,Y的均值E(Y)的变化。或者说j给出了Xj的单
3、位变化对Y均值的“直接”或“净”(不含其他变量)影响。,总体回归函数,总体回归模型的矩阵表示,样本回归函数与样本回归模型,从一次抽样中获得的总体回归函数的近似,称为样本回归函数(sample regression function)。样本回归函数的随机形式,称为样本回归模型(sample regression model)。,样本回归函数的矩阵表示,二、多元线性回归模型的基本假设,关于经典回归模型的假定,当多元线性回归模型满足下列的基本假设的情况下,可以采用普通最小二乘法(OLS)估计参数。,1、关于模型关系的假设,模型设定正确假设。The regression model is correc
4、tly specified.线性回归假设。The regression model is linear in the parameters。,2、关于解释变量的假设,确定性假设。解释变量X是确定性变量,不是随机变量,在重复抽样中取固定值。与随机项不相关假设。,由确定性假设可以推断。,无完全多重共线性假设。各解释变量之间不存在严格线性相关性 适用于多元线性回归模型。样本方差假设。随着样本容量的无限增加,解释变量X的样本方差趋于一有限常数。,时间序列数据作样本时间适用,3、关于随机项的假设,0均值假设。给定X的条件下,随机误差项的均值为0.,由模型设定正确假设推断。含义:随机误差项的条件零均值假设
5、是指它的期望不依赖与X的变化而变化,且总为常数零。也就是说,随机误差项与解释变量不相关。使总体回归函数的随机形式与确定形式等价的关键假设。,是否满足需要检验。含义:条件同方差假设是指随机误差项的方差不依赖于X的变化而变化,且总为常数,同方差假设:给定X的条件下,对所有观测,方差都是相同的。,非条件零均值性质:,非条件同方差性质:,根据期望迭代法则:,序列不相关假设。各随机误差项之间无自相关性。,是否满足需要检验。,4、随机项的正态性假设,在采用OLS进行参数估计时,不需要正态性假设。在利用参数估计量进行统计推断时,需要假设随机项的概率分布。一般假设随机项服从正态分布。可以利用中心极限定理(ce
6、ntral limit theorem,CLT)进行证明。正态性假设。The s follow the normal distribution.,5、CLRM 和 CNLRM,以上假设(正态性假设除外)也称为线性回归模型的经典假设或高斯(Gauss)假设,满足该假设的线性回归模型,也称为经典线性回归模型(Classical Linear Regression Model,CLRM)。同时满足正态性假设的线性回归模型,称为经典正态线性回归模型(Classical Normal Linear Regression Model,CNLRM)。,3.2 多元线性回归模型的估计,一、普通最小二乘估计 二
7、、最大或然估计 三、矩估计 四、参数估计量的性质 五、样本容量问题六、估计实例,说 明,估计方法:3大类方法:OLS、ML或者MM在经典模型中多应用OLS在非经典模型中多应用ML或者MM,一、普通最小二乘估计(OLS),1、普通最小二乘估计,最小二乘原理:根据被解释变量的所有观测值与估计值之差的平方和最小的原则求得参数估计量。即使残差平方和最小的参数估计量。,已知,假定,步骤:,解该(k+1)个方程组成的线性代数方程组,即可得到(k+1)个待估参数的估计值,正规方程组的矩阵形式,条件?,OLS估计的矩阵表示,2、正规方程组的另一种表达,该正规方程组成立的条件是什么?,3、随机误差项的方差的无偏
8、估计,M为等幂矩阵,二、最大似然估计,1、最大似然法,最大似然法(Maximum Likelihood,ML),也称最大或然法,是不同于最小二乘法的另一种参数估计方法,是从最大或然原理出发发展起来的其它估计方法的基础。基本原理:当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大。ML必须已知随机项的分布。,2、估计步骤:以一元模型为例,Yi的分布,Yi的概率函数,Y的所有样本观测值的联合概率似然函数,对数似然函数,对数似然函数极大化的一阶条件,结构参数的ML估计量,分布参数的ML估计量,3、似然函数,4、ML估计量,由对数似然函数求极大,得到
9、参数估计量,结果与参数的OLS估计相同,分布参数估计结果与OLS不同,注意:ML估计必须已知Y的分布。只有在正态分布时ML和OLS的结构参数估计结果相同。如果Y不服从正态分布,不能采用OLS。例如:选择性样本模型、计数数据模型等。,三、矩估计Moment Method,MM,1、参数的矩估计,参数的矩估计就是用样本矩去估计总体矩。用样本的一阶原点矩作为期望的估计量。用样本的二阶中心矩作为方差的估计量。从样本观测值计算样本一阶(原点)矩和二阶(原点)矩,然后去估计总体一阶矩和总体二阶矩,再进一步计算总体参数(期望和方差)的估计量。,样本的一阶矩和二阶矩,总体一阶矩和总体二阶矩的估计量,总体参数(
10、期望和方差)的估计量,2、多元线性计量经济学模型的矩估计,如果模型的设定是正确,则存在一些为0的条件矩。矩估计的基本思想是利用矩条件估计模型参数。,一组矩条件,等同于OLS估计的正规方程组。,四、参数估计量的性质,说明,在满足基本假设的情况下,多元线性模型结构参数的普通最小二乘估计、最大或然估计及矩估计具有线性性、无偏性、有效性。同时,随着样本容量增加,参数估计量具有渐近无偏性、渐近有效性、一致性。利用矩阵表达可以很方便地证明,注意证明过程中利用的基本假设。,1、无偏性,这里利用了假设:E(X)=0,2、有效性(最小方差性),五、样本容量问题,1、最小样本容量,所谓“最小样本容量”,即从最小二
11、乘原理和最大或然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限。,样本最小容量必须不少于模型中解释变量的数目(包括常数项),即 n k+1,为什么?,2、满足基本要求的样本容量,从统计检验的角度:n30 时,Z检验才能应用;n-k8时,t分布较为稳定。,一般经验认为:当n30或者至少n3(k+1)时,才能说满足模型估计的基本要求。,模型的良好性质只有在大样本下才能得到理论上的证明。,六、例题,地区城镇居民消费模型,被解释变量:地区城镇居民人均消费Y解释变量:地区城镇居民人均可支配收入X1前一年地区城镇居民人均消费X2样本:2006年,31个地区,数据,变量间关系,变量间关系
12、,OLS估计,OLS估计结果,ML估计,ML估计结果,MM估计,MM估计结果,3.3 多元线性回归模型的统计检验 Statistical Test of Multiple Linear Regression Model,一、拟合优度检验 二、方程的显著性检验(F检验)三、变量的显著性检验(t检验)四、参数的置信区间,一、拟合优度检验 Goodness of Fit,1、概念,拟合优度检验:对样本回归直线与样本观测值之间拟合程度的检验。问题:采用普通最小二乘估计方法,已经保证了模型最好地拟合了样本观测值,为什么还要检验拟合程度?如何检验:构造统计量统计量只能是相对量,2、可决系数与调整的可决系数
13、,总离差平方和的分解,证明:该项等于0,可决系数(Coefficient of Determination),该统计量越接近于1,模型的拟合优度越高。,从R2的表达式中发现,如果在模型中增加解释变量,R2往往增大。,这就给人一个错觉:要使得模型拟合得好,只要增加解释变量即可。,但是,由增加解释变量引起的R2的增大与拟合好坏无关,所以R2需调整。,调整的可决系数(adjusted coefficient of determination),其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。,调整的可决系数多大才是合适的?,3、赤池信息准则和施瓦茨准则,为了比较所含解释变量个数不同
14、的多元回归模型的拟合优度,常用的标准还有:赤池信息准则(Akaike information criterion,AIC),施瓦茨准则(Schwarz criterion,SC),这两准则均要求仅当所增加的解释变量能够减少AIC值或SC值时才在原模型中增加该解释变量。,地区城镇居民消费模型(k=2),地区城镇居民消费模型(k=1),与k=2比较,变化不大,二、方程的显著性检验(F检验)Testing the Overall Significance of a Multiple Regression(the F test),1、假设检验(Hypothesis Testing),所谓假设检验,就是
15、事先对总体参数或总体分布形式作出一个假设,然后利用样本信息来判断原假设是否合理,即判断样本信息与原假设是否有显著差异,从而决定是否接受或否定原假设。假设检验采用的逻辑推理方法是反证法。先假定原假设正确,然后根据样本信息,观察由此假设而导致的结果是否合理,从而判断是否接受原假设。判断结果合理与否,是基于“小概率事件不易发生”这一原理的。,2、方程显著性的F检验,方程的显著性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立作出推断。在多元模型中,即检验模型中的参数j是否显著不为0。,F检验的思想来自于总离差平方和的分解式 TSS=ESS+RSS,如果这个比值较大,则X的联合
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 统计学 多元 线性 回归

链接地址:https://www.31ppt.com/p-6332802.html