统计基础与品质统计.ppt
《统计基础与品质统计.ppt》由会员分享,可在线阅读,更多相关《统计基础与品质统计.ppt(92页珍藏版)》请在三一办公上搜索。
1、統計基礎及品質統計,資料數據基礎統計學生產製造環境品質統計圖表製程能力分析SPC統計製程控制,資料及數據,你想瞭解什麽?,資訊源:,分組,離散型,名義型,順序型,間距型,“資料本身並不能提供資訊 必須對資料加以處理以後才能得到資訊,而處理資料的工具就是統計學”.,衡量,連續型,比率型,文字的(A to Z)圖示的 口頭的 數位的(0-9),數據,FAIL,PASS,數量 單價 說明 總價1$10.00$10.003$1.50$4.5010$10.00$10.002$5.00$10.00,裝貨單,離散型資料和連續型資料,電氣電路,溫度,溫度計,連續型,離散型,卡尺,錯誤,$,$,連續資料的優勢,
2、連續的,離散的,信息量少,信息量多,離散型資料(通常)分組/分類是/否,合格/不合格不能計算 離散型資料 分級 很少用 很難加以計算 連續型資料 最常見的尺規 計算時要很小心 連續型資料 比例關係 可應用演算法的多數公式,分類 標簽 第一、第二、第三 相對高度 字母順序 1234溫度計 刻度盤 速度=距離/時間 直尺,衡量工具分類,說明,例子,衡量工具分類,名義型:不相關類,只代表符合條件或不符合條件個體數.順序型:順序類,但沒有各類間隔的資訊.間距型:順序類,兩類之間間隔相等,但沒有絕對零點.比例型:順序類,兩 類之間間隔相等,同時存在絕對零點.,無權使用數位相機,Fred W.Bill S
3、.John D.Sam C.,Bob T.Jim C.Joe W.Diane A.,名義型衡量工具,名義尺規用於不考慮任何特性時,對各元素進行分類。示例中的名義尺規包括魚骨圖上的“原因”,是/否,合格/不合格,等等。,設備,應用,環境,材料,油漆粘附性差,應用表,從每一組中選擇一項國籍婚姻狀態職業,責任人列表,有權使用數位相機,順序型衡量工具,順序尺規根據特性給名義型資料排序(合格或不合格)。順序尺規示例中包括相對高度、Pareto 表、顧客滿意度調查,等等。,例 1:Pareto 表 油漆粘附性檢驗,相對尺寸,準備,順序尺規,原型,油漆類型,應用,濕度,操作者,重要性,例 2:顧客調查,問題
4、:你認爲我們的 服務如何?,非常好很好好還好差,完全同意 有點同意 既不同意也不反對有點反對 完全反對,比預期的稍差 比預期的差得多 最好 較好 中等較差 最差,比預期的好得多 比預期的稍好與預期的一樣,比例尺規範圍舉例 學校裏的五分制(A B C D E)七分制(1 2 3 4 5 6 7)口頭評分(優、好、中、可、差),調查表問卷類型,順序型衡量工具,間距和比例衡量工具,1.移動距離,0,0.10,0.20,2.刻度盤,間距尺規(相對)通常用來表示等距類別的數位資訊,但沒有絕對零點。刻度盤位於表座的頂端,用來作差異對比等。比例尺規 通常用來表示等距類別的數位資訊,但在測量範圍內有絕對零點。
5、卷尺、直尺、在恒定速度下位置相對於時間的值,等等。,間距尺規舉例:(沒有絕對零點),比例尺規舉例:(有絕對零點),3.相對速度,1.直尺,2.恒定速度下位置相對於時間的值,3.將重量作爲以磚塊數量爲變數的函數值,表座,基礎品質統計學,變異(Variation),當我們從一過程中收集數據,會發現數據不會永遠相同,因為變異(Variation)在過程中隨時存在,變異(Variation),我們觀察到的變異,是在過程中各種擾動累積起來的.,變異(Variation),參數,X,X,X,X,X,X,X,X,X,量測值,分佈,多數在此,少數在此,Center均值,Spread散佈,雖然變異是隨機的,但他
6、們的隨機性通常有模式存在,這種模式可用統計上的分佈(Distribution)來形容.如此變異加以統計分析,便可有某種程度的預測性存在並易於被理解或控制.,變異(Variation),中心Center:數據最集中在何處?散佈Spread:數據變異程度及分散狀況如何?形狀Shape:分佈是否對稱?扁平?凹凸?是否有異常區,描述分佈(Distribution),變異(Variation),變異可以是穩定(Stable)或不穩定(Unstable)的.-穩定變異:變化的分佈較具預測性及一致性,對時間而言具可預測性-不穩定變異:對時間而言不具可預測性,PROCESS#1-Stable Variatio
7、n穩定,Part,Thickness,PROCESS#2-Unstable Variation不穩定,Part,Distribution,Distribution,Thickness,變異(Variation),在製造過程中,有變異都是不好.問題是我們能容忍到何種範圍.我們能容忍的變異是具有以下兩項特徵:,STABLE(i.e.,consistent and predictable over time).,CAPABLE(i.e.,small variation compared to the product specifications.),Product Specifications,Pa
8、rameter Distribution,穩定,散佈小,控制變異(Variation),瞭解過程:,使制程更好:,保持穩定並維持高制程能力,過程由時間來看是否穩?制程能力是否能滿足目標規格?,確認並除去不穩定原因 確認並降低變異程度使滿足規格,持續監視及控制過程的變異源,特徵化,改善,控制,因為用抽樣統計,其結果只是估計,和真實可能有差異.適當的抽樣可使統計分析更準確.,Statistics 分佈的數學描述與定義,中心Center:數據最集中在何處?散佈Spread:數據變異程度及分散狀況如何?形狀Shape:分佈是否對稱?扁平?凹凸?是否有異常區,樣本均值,=,X,样本,母體參數和樣本統計量
9、,母體:包含所關心特性的已經製造或將要製造的物件 的全體樣本:在統計研究中實際測量的物件組。樣本通常爲所關心母體的子集,“母體參數”,“樣本統計量”,m=母體均值,s=樣本標準偏差,母體,s=母體標準偏差,均值:一組值的算術平均均值:-反映所有值的影響-受極值影響嚴重 中位數:反應 50%的序一組數排序後居中的數-在計算中不必包含所有值-相對於極值具有“可靠性”眾數值:-在一組資料中最常發生的值,Median,(Mean平均),(Median中數),眾數,Center(中心),50%,50%,全距:在一組資料中,最高值和最低值間的數值距離變異(s2):每個資料點與均值的平均平方偏差標準偏差(s
10、):變異數的平方根.量化變動最常用的量,全距最大值最小值,Spread(散佈),The Rule states how and can be used to describe the entire distribution:Roughly 60-75%of the data are within 1 of.Roughly 90-98%of the data are within 2 of.Roughly 99-100%of the data are within 3 of.,60-75%,90-98%,99-100%,m,m-s,m-2 s,m+s,m+2 s,m+3 s,m-3 s,Spre
11、ad(散佈),The shape of a distribution can be described by skewness歪斜(denoted by 1)and by kurtosis凹凸平坦(denoted by 2).,歪斜,凹凸平坦,Shape(形狀),母體均值,樣本均值,母體標準偏差,樣本標準偏差,常用計算公式,母體變異,樣本變異,The most important and useful distribution shape is called the Normal distribution,which is symmetric(對稱),uni-modal(單峰),and fre
12、e of outliers(沒有特異點):,Normal Distribution常態分佈,“常態”分佈是具有某些一致屬性的資料的分佈這些屬性對理解基礎過程(資料從該過程中收集)的特徵非常有用.大多數自然現象和人爲過程都符合常態分配,可以用常態分配表示,故大部份統計都假設是常態分佈。即使在資料不完全符合常態分配時,分析結果也很接近。特別不正常的分佈若假設為常態而去分析則有可能得到誤導結果。有數學技術可將其轉變成常態分佈來作分析。,A Normal probability plot is a cumulative distribution plot where the vertical scal
13、e is changed in such a way that data from a Normal distribution will form a straight line:,Histogram,CumulativeDistribution,NormalProbability Plot,常態概率圖,Normal Distribution常態分佈,第一個屬性:只要知道下面兩項就可以完全描述常態分配:均值標準差,常態分配的好處-簡化,第一個分佈,第二個分佈,第三個分佈,這三個分佈有什麽不同?,常態曲線和其概率,4,3,2,1,0,-,1,-,2,-,3,-,4,40%,30%,20%,10%
14、,0%,99.73%,第二個屬性:曲線下方的面積可以用於估計某“事件”發生的累積概率,95%,68%,樣本值的概率,距離均值的標準偏差數,得到兩值之間的值的累積概率,1,2,0,1,1,0,1,0,0,9,0,8,0,Stat Basic Statistics Display Descriptive StatisticsGraphs Graphical Summary,A2 27.11,描述性統計,圖形分析總結,變數:神秘,中值的95%信賴區間,的95%信賴區間,Anderson-Darling常態測試,P值 0.00,均值 100.00,標準偏差 32.38,變異數 1048.78,偏度 0
15、.01,峰度-1.63,資料量 500.00,最小值 41.77,第一象限 68.69,中值 104.20,第三象限 130.81,最大值 162.82,的95%信賴區間97.5 102.85,s的95%信賴區間30.49 34.53,中值的95%信賴區間 82.78 117.66,資料收集時的重點,How the data are collected affects the statistical appropriateness and analysis of a data set(資料如何收集可影響統計的適切性).Conclusions from properly collected da
16、ta can be applied more generally to the process and output.Inappropriately collected data CANNOT be used to draw valid conclusions about a process.Some aspects of proper data collection that must be accounted for are:The manufacturing environment(製程環境)from which the data are collected.When products
17、are manufactured in batches or lots,the data must be collected from several batches or lots.Randomization(隨機).When the data collection is not randomized,statistical analysis may lead to faulty conclusions.,Continuous Manufacturing(連續)occurs when an operation is performed on one unit of product at a
18、time.An assembly line is typical of a continuous manufacturing environment,where each unit of product is worked on individually and a continuous stream of finished products roll off the line.The automotive industry is one example of Continuous Manufacturing.Other examples of continuously manufacture
19、d product are:television sets,fast food hamburgers,computers.,Lot/Batch Manufacturing(批次)occurs occurs when operations are performed on products in batches,groups,or lots.The final product comes off the line in lots,instead of a stream of individual parts.Product within the same lot are processed to
20、gether,and receive the same treatment while in-process.Lot/Batch Manufacturing is typical of the semiconductor industry and many of its suppliers.Other examples of lot/batch manufactured product include:chemicals,semiconductor packages,cookies.,Manufacturing Environment製造環境,In Continuous Manufacturi
21、ng the most important variation is between partsIn Lot/Batch Manufacturing,the variation can occur between the parts in a lot and between the lots:Product within the same lot is manufactured together.Product from different lots are manufactured separately.Because of this,each lot has a different dis
22、tribution.This is important because Continuous Manufacturing is a basic assumption for many of the standard statistical methods found in most textbooks or QC handbooks.These methods are not appropriate for Lot/Batch Manufacturing.Different statistical methods need to be used to take into account the
23、 several sources of variation in Lot/Batch Manufacturing.要注意:連續和批量生產所用的統計方法有些不同,With Lot/Batch Manufacturing,each lot has a different mean.Due to random processing fluctuations,these lots will vary even though the process may be stable.This results in several“levels”of distributions,each level with
24、its own variance and mean:A distribution of units of product within the same lot.A distribution of the means of different lots.The total distribution of all units of product across all lots.,The different variances of a Lot/Batch Manufacturing process form a hierarchy called nesting.Data collected f
25、rom such processes usually have what is called a nested data structure.,1,1,2,LOTS,班,2,1,2,Each of the levels in the nested structure corresponds to a single variance.With a nested data set from this process,we need to take each source of variation into account when collecting data to ensure the tot
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 统计 基础 品质
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-6332762.html