空间向量法解决立体几何证明.ppt
《空间向量法解决立体几何证明.ppt》由会员分享,可在线阅读,更多相关《空间向量法解决立体几何证明.ppt(34页珍藏版)》请在三一办公上搜索。
1、利用空间向量解决立体几何问题,数学专题二,复习:,2.向量的夹角:,A,B,向量 的夹角记作:,1.空间向量的数量积:,4.向量的模长:,3.有关性质:,两非零向量,5.共面向量定理:如果两个向量 不共线,则向量 与向量 共面的充要条件是存在实数对 使,推论:,一.引入两个重要的空间向量,1.直线的方向向量 把与直线平行的向量都称为直线的方向向量.如图,在空间直角坐标系中,由A(x1,y1,z1)与B(x2,y2,z2)确定的直线AB的方向向量是,2.平面的法向量,与平面垂直的向量叫做平面的法向量.,n,例1.如图所示,正方体的棱长为1直线OA的一个方向向量坐标为_平面OABC 的一个法向量坐
2、标为_平面AB1C 的一个法向量坐标为_,(-1,-1,1),(0,0,1),(1,0,0),练习:在棱长为2的正方体ABCD-A1B1C1D1中,O是面AC的中心,求面OA1D1的法向量.,A,B,C,D,O,A1,B1,C1,D1,z,x,y,解:以A为原点建立空间直角坐标系O-xyz,设平面OA1D1的法向量的法向量为n=(x,y,z),那么O(1,1,0),A1(0,0,2),D1(0,2,2),取z=1,解得:,得:,由=(-1,-1,2),=(-1,1,2),练习 如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC=1,E是PC的中点,求平面EDB
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 向量 解决 立体几何 证明
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-6328171.html