直流脉宽调速系统的主要问题.ppt
《直流脉宽调速系统的主要问题.ppt》由会员分享,可在线阅读,更多相关《直流脉宽调速系统的主要问题.ppt(68页珍藏版)》请在三一办公上搜索。
1、第8章 直流脉宽调速系统的主要问题,自从全控型电力电子器件问世以后,就出现了采用脉冲宽度调制(PWM)的高频开关控制方式形成的脉宽调制变换器-直流电动机调速系统,简称直流脉宽调速系统,即直流PWM调速系统。,本节提要,PWM变换器的工作状态和波形直流PWM调速系统的机械特性PWM控制与变换器的数学模型直流脉调速系统的特殊问题,8.1 PWM变换器的工作状态和电压、电流波形,PWM变换器的作用是:用PWM调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压系列,从而可以改变平均输出电压的大小,以调节电机转速。PWM变换器电路有多种形式,主要分为不可逆与可逆两大类,下面分别阐述其工作
2、原理。,8.1.1.不可逆PWM变换器,(1)简单的不可逆PWM变换器 简单的不可逆PWM变换器-直流电动机系统主电路原理图如图1所示,功率开关器件可以是任意一种全控型开关器件,这样的电路又称直流降压斩波器。,图1 简单的不可逆PWM变换器-直流电动机系统,VD,Us,+,Ug,C,VT,id,+,_,_,E,a)主电路原理图,主电路结构,2,1,Ud,O,t,Ug,图中:Us直流电源电压 C 滤波电容器 M 直流电动机 VD 续流二极管VT 功率开关器件 VT 的栅极由脉宽可调的脉冲电压系列Ug驱动。,工作状态与波形,在一个开关周期内,当0 t ton时,Ug为正,VT导通,电源电压通过VT
3、加到电动机电枢两端;当ton t T 时,Ug为负,VT关断,电枢失去电源,经VD续流。,电机两端得到的平均电压为(1)式中=ton/T 为 PWM 波形的占空比,,输出电压方程,改变(0 1)即可调节电机的转速,若令=Ud/Us为PWM电压系数,则在不可逆PWM 变换器中=(2),(2)有制动的不可逆PWM变换器电路,在简单的不可逆电路中电流不能反向,因而没有制动能力,只能作单象限运行。需要制动时,必须为反向电流提供通路,如图2a所示的双管交替开关电路。当VT1 导通时,流过正向电流+id,VT2 导通时,流过 id。应注意,这个电路还是不可逆的,只能工作在第一、二象限,因为平均电压 Ud
4、并没有改变极性。,图2a 有制动电流通路的不可逆PWM变换器,主电路结构,M,+,VD2,Ug2,Ug1,VT2,VT1,VD1,E,4,1,2,3,C,Us,+,VT2,Ug2,VT1,Ug1,工作状态与波形,一般电动状态 在一般电动状态中,始终为正值(其正方向示于图2a中)。设ton为VT1的导通时间,则一个工作周期有两个工作阶段:在0 t ton期间,Ug1为正,VT1导通,Ug2为负,VT2关断。此时,电源电压Us加到电枢两端,电流 id 沿图中的回路1流通。,一般电动状态(续),在 ton t T 期间,Ug1和Ug2都改变极性,VT1关断,但VT2却不能立即导通,因为id沿回路2经
5、二极管VD2续流,在VD2两端产生的压降给VT2施加反压,使它失去导通的可能。因此,实际上是由VT1和VD2交替导通,虽然电路中多了一个功率开关器件,但并没有被用上。,U,i,Ud,E,id,Us,t,ton,T,0,O,输出波形:一般电动状态的电压、电流波形与简单的不可逆电路波形(图2b)完全一样。,图2b 一般电动状态的电压、电流波形,工作状态与波形(续),制动状态 在制动状态中,id为负值,VT2就发挥作用了。这种情况发生在电动运行过程中需要降速的时候。这时,先减小控制电压,使 Ug1 的正脉冲变窄,负脉冲变宽,从而使平均电枢电压Ud降低。但是,由于机电惯性,转速和反电动势E还来不及变化
6、,因而造成 E Ud 的局面,很快使电流id反向,VD2截止,VT2开始导通。,制动状态的一个周期分为两个工作阶段:在 0 t ton 期间,VT2 关断,id 沿回路 4 经 VD1 续流,向电源回馈制动,与此同时,VD1 两端压降钳住 VT1 使它不能导通。在 ton t T期间,Ug2 变正,于是VT2导通,反向电流 id 沿回路 3 流通,产生能耗制动作用。因此,在制动状态中,VT2和VD1轮流导通,而VT1始终是关断的,此时的电压和电流波形示于图2c。,U,i,Ud,E,-id,Us,t,ton,T,0,4,4,4,4,3,3,3,VT2,VT2,VT2,VD1,VD1,VD1,VD
7、1,t,Ug,O,输出波形,图2c 制动状态的电压电流波形,O,工作状态与波形(续),轻载电动状态 有一种特殊情况,即轻载电动状态,这时平均电流较小,以致在关断后经续流时,还没有到达周期 T,电流已经衰减到零,此时,因而两端电压也降为零,便提前导通了,使电流方向变动,产生局部时间的制动作用。,轻载电动状态,一个周期分成四个阶段:第1阶段,VD1续流,电流 id 沿回路4流通第2阶段,VT1导通,电流 id 沿回路1流通第3阶段,VD2续流,电流 id 沿回路2流通第4阶段,VT2导通,电流 id 沿回路3流通,在1、4阶段,电动机流过负方向电流,电机工作在制动状态;在2、3阶段,电动机流过正方
8、向电流,电机工作在电动状态。因此,在轻载时,电流可在正负方向之间脉动,平均电流等于负载电流,其输出波形见图2d。,输出波形,图2d 轻载电动状态的电流波形,4,1,2,3,T,ton,id,t,O,t4,t2,小 结,表1 二象限不可逆PWM变换器在不同工作状态下的 导通器件和电流回路与方向,8.1.2 桥式可逆PWM变换器,可逆PWM变换器主电路有多种形式,最常用的是桥式(亦称H形)电路,如图3所示。这时,电动机M两端电压的极性随开关器件栅极驱动电压极性的变化而改变,其控制方式有双极式、单极式、受限单极式等多种,这里只着重分析最常用的双极式控制的可逆PWM变换器。,+Us,Ug4,M,+,-
9、,Ug3,VD1,VD2,VD3,VD4,Ug1,Ug2,VT1,VT2,VT4,VT3,1,3,2,A,B,4,VT1,Ug1,VT2,Ug2,VT3,Ug3,VT4,Ug4,图3 桥式可逆PWM变换器,H形主电路结构,双极式控制方式,(1)正向运行第1阶段,在 0 t ton 期间,Ug1、Ug4为正,VT1、VT4导通,Ug2、Ug3为负,VT2、VT3截止,电流 id 沿回路1流通,电动机M两端电压UAB=+Us;第2阶段,在ton t T期间,Ug1、Ug4为负,VT1、VT4截止,VD2、VD3续流,并钳位使VT2、VT3保持截止,电流 id 沿回路2流通,电动机M两端电压UAB=
10、Us;,双极式控制方式(续),(2)反向运行第1阶段,在 0 t ton 期间,Ug2、Ug3为负,VT2、VT3截止,VD1、VD4 续流,并钳位使 VT1、VT4截止,电流 id 沿回路4流通,电动机M两端电压UAB=+Us;第2阶段,在ton t T 期间,Ug2、Ug3 为正,VT2、VT3导通,Ug1、Ug4为负,使VT1、VT4保持截止,电流 id 沿回路3流通,电动机M两端电压UAB=Us;,输出波形,U,i,Ud,E,id,+Us,t,ton,T,0,-Us,O,(1)正向电动运行波形,U,i,Ud,E,id,+Us,t,ton,T,0,-Us,O,(2)反向电动运行波形,输出
11、平均电压,双极式控制可逆PWM变换器的输出平均电压为(3)如果占空比和电压系数的定义与不可逆变换器中相同,则在双极式控制的可逆变换器中=2 1(4)注意:这里 的计算公式与不可逆变换器中的公式就不一样了。,调速范围,调速时,的可调范围为01,10.5时,为正,电机正转当 0.5时,为负,电机反转当=0.5时,=0,电机停止,注 意,当电机停止时电枢电压并不等于零,而是正负脉宽相等的交变脉冲电压,因而电流也是交变的。这个交变电流的平均值为零,不产生平均转矩,徒然增大电机的损耗,这是双极式控制的缺点。但它也有好处,在电机停止时仍有高频微振电流,从而消除了正、反向时的静摩擦死区,起着所谓“动力润滑”
12、的作用。,性能评价,双极式控制的桥式可逆PWM变换器有下列优点:1)电流一定连续。2)可使电机在四象限运行。3)电机停止时有微振电流,能消除静摩擦死区。4)低速平稳性好,系统的调速范围可达1:20000 左右。5)低速时,每个开关器件的驱动脉冲仍较宽,有利于保证器件的可靠导通。,性能评价(续),双极式控制方式的不足之处是:在工作过程中,4个开关器件可能都处于开关状态,开关损耗大,而且在切换时可能发生上、下桥臂直通的事故,为了防止直通,在上、下桥臂的驱动脉冲之间,应设置逻辑延时。,8.2 直流脉宽调速系统的机械特性,由于采用脉宽调制,严格地说,即使在稳态情况下,脉宽调速系统的转矩和转速也都是脉动
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直流 调速 系统 主要 问题
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-6318990.html