深度学习的常用模型和方法.ppt
《深度学习的常用模型和方法.ppt》由会员分享,可在线阅读,更多相关《深度学习的常用模型和方法.ppt(19页珍藏版)》请在三一办公上搜索。
1、,深度学习的常用模型和方法,2016年9月18日,目录,自动编码器,1,稀疏编码,2,卷积神经网络,3,RNN与LSTM,4,深度学习的背景,实际生活中,人们为了解决一个问题,如对象的分类(文档、图像等),首先必须做的事情是如何来表达一个对象,即必须抽取一些特征来表示一个对象。如文本的处理中,常常用词集合来表示一个文档,或把文档表示在向量空间中(称为VSM模型),然后才能提出不同的分类算法来进行分类;又如在图像处理中,我们可以用像素集合来表示一个图像,后来人们提出了新的特征表示,如SIFT,这种特征在很多图像处理的应用中表现非常良好,特征选取得好坏对最终结果的影响非常巨大。因此,选取什么特征对
2、于解决一个实际问题非常的重要。然而,手工地选取特征是一件非常费力、启发式的方法,能不能选取好很大程度上靠经验和运气。自动地学习特征的方法,统称为Deep Learning。,AutoEncoder自动编码器,深度学习中最简单的一种方法是利用人工神经网络的特点。如果给定一个神经网络,我们假设其输入和输出相同,然后调整其每层参数,得到每一层的权重,自然,就得到了输入的几种不同表示,这些表示就是特征(feature)。自动编码器是一种尽可能复现输入信号的神经网络。其大致过程如下:1,给定无标签数据,用非监督学习学习特征,AutoEncoder自动编码器,此时的误差可由重构后与原输入相比得到。经过最小
3、化重构误差之后,可以认为code此时就是input 的一种良好的表达。,AutoEncoder自动编码器,2,通过编码器产生特征,逐层训练 将第一层输出的code作为第二层的输入信号,同样最小化重构误差,就得到了第二层的参数和第二层输出的code。其他层用同样的方法炮制,每一层均能得到输入的一种表达,直到产生到需要的层数。,AutoEncoder自动编码器,3,有监督的微调 最后,为了可以实现分类,一般可以在AutoEncoder的最顶层添加一个分类器,然后通过标准的多层神经网络的监督训练方法去训练。在这里,可以通过有标签样本仅调整分类器,也可以对整个系统进行微调(数据多)。,AutoEnco
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 深度 学习 常用 模型 方法
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-6311396.html