《涡旋式压缩机简介及压缩机常见故障.ppt》由会员分享,可在线阅读,更多相关《涡旋式压缩机简介及压缩机常见故障.ppt(40页珍藏版)》请在三一办公上搜索。
1、涡旋压缩机简介,2023/10/15,涡旋压缩机工作原理,低压腔,中压腔,高压腔,中央排气口,涡旋压缩机是怎样工作的,涡旋压缩机的发展历史,1905年法国人Leon Creux 提出涡旋机械的工作原理,并申请美国专利。但是由于零件的精度要求与轴向力的平衡制约了其产业化。70年代,高精度数控铣床的涌现和世界能源危机的加剧,促进了涡旋压缩机的发展。在1972年美国的Arthur D Little 公司成功开发出压缩氦气的涡旋压缩机,并应用在远洋海轮上,标志着涡旋压缩机实用化年代的到来。80年代,涡旋压缩机首先在空调压缩机技术领域取得商业应用。(81年,三电、三菱重工推出汽车空调用涡旋压缩机;83年
2、,日立推出柜式空调用全封闭涡旋压缩机;87年,谷轮开始生产空调压缩机)90年代,涡旋压缩机的系列化产品相继问世。日本松下电器公司生产出家用空调用小型全封闭压缩机;东芝公司推出列车空调用压缩机;Carrier公司推出在冷水机组上并联使用的涡旋压缩机。涡旋空气压缩机也得到一定的发展,空调压缩机国内主要生产企业,优点:结构简单、体积小、重量轻。(与活塞压缩机比:零件减少90%、体积减小40%、重量减轻15%)无吸排气阀。减少了易损件,降低吸排气阻力损失,降低噪音与振动,易于实现变转速无余隙容积。容积效率提高不直接接触,采用油膜密封。摩擦损失小,机械效率高多压缩室同时工作,工作连续,压缩力矩变化平稳缺
3、点:精度要求高,形位公差都在微米级无排气阀,变工况性能欠佳工作腔不易实施外部冷却,压缩过程的热量难排出,因此只能够压缩绝热指数小的气体或者内冷却大排量涡旋压缩机难实现。受齿高限制,排量大直径大,不平衡旋转质量增大,机器不紧凑且重量增加。,涡旋压缩机特点,效率高的特点,与其他结构压缩机相比,涡旋式压缩机无余隙容积,所以容积效率高。高精密机加工设备,保证涡旋加工精度,泄漏小。,低振动、低噪音特点,涡旋压缩机,动盘旋转一周时,吸气、压缩、排气过程是连续进行的,而且,各级压力腔对称分布,回转速度低,因此,其旋转一周时的压缩扭力变化很小(左图表示:往复式、旋转及涡旋式压缩机的扭力变化)涡旋压缩机与其他压
4、缩机相比较之下,扭力变化幅度仅有1/10,非常小,所以其运行时振动、噪音均很小。,高可靠性特点,和其他压缩机相比,涡旋压缩机是连续吸气、压缩、排气循环工作过程,因此,不需吸、排气阀,从而无阀故障(压缩不良),而具有更高的可靠性。,高压腔与低压腔涡旋压缩机的划分,主要是对全封闭涡旋压缩机中,电机所处在的工作环境温度进行区分。电机处于排气侧(壳体内为排气压力),称为高压腔(一般以HITACHI为代表);电机处于回气侧(壳体内为回气压力),称为低压腔(一般以COPELAND为代表)。两种结构的涡旋压缩机,与其结构对应具有相应的特点,且各具优缺点。,高压腔与低压腔涡旋压缩机特点,高压腔涡旋压缩机结构,
5、排气口,吸气口,定盘,动盘,机架,曲轴,电机(定、转子),壳体,防自转滑环,主轴承,内置式过流、过热保护器,压差供油,低压腔涡旋压缩机结构,排气口,吸气口,定盘,动盘,机架,曲轴,电机(定、转子),壳体,防自转滑环,主轴承,离心供油,壳体内高低压分隔板,高压腔结构,低压腔结构,优点,具有较大的排气缓冲容积,振动小,输气均匀吸气预热小容积效率高(直接吸气)润滑得到可靠保证(可以采用压力供油润滑)压缩机中可以有较多的润滑油起良好的润滑冷却及液体阻塞作用直接吸气不存在液体制冷剂对润滑油膜的破坏作用承受轴向气体力的能力较好,螺钉只起紧固作用,吸气段具有较大的缓冲容积电机的工作环境较好(低温低压)壳体大
6、部分低压,气密性及受力较好抗液击的能力较强,对进入管道中的异物杂质抵抗能力较强,高压腔与低压腔涡旋压缩机特点对比,高压腔结构,低压腔结构,缺点,较小的吸气缓冲容积,吸气消音效果较差抗液击的能力较差高压壳体对气密性及强度要求较高电机工作环境恶劣,直接吸气容易因杂质异物损坏压缩机,较强的吸气预热造成容积效 率下降较小的排气缓冲容积,噪音振动较大压缩机中油量必须严格控制,润滑密封效果较差液体制冷剂有可能破坏润滑油膜,造成轴承润滑恶化壳体内高低压腔的存在,增加了密封的难度,高压腔与低压腔涡旋压缩机特点对比,影响EER主要因素,从制冷系统上说,降低冷凝温度Tk和升高蒸发温度T0都可以使EER上升 采用高
7、效的压缩机,采用直流变频压缩机代替普通定速压缩机或交流变频压缩机 适当加大冷凝器、加大室外机的风量,使Tk下降;适当加大蒸发器、加大室内机的风量,使T0上升。但加大内外机风量的同时要考虑风机功率的增加,从整机上说,不一定是风量越大EER越高 利用高效的换热器,例如用内螺纹管代替光管,采用合适的管径与流路等采用高效的直流电机代替交流电机 冷媒充注量尽量少 采用排量较大的变频压缩机代替排量较小的变频压缩机,以压缩机的额定频率来做制冷的主频,能力不足:压缩机是否过小?毛细管与冷媒量是否是最佳组合?室内侧与室外侧风量是否合理?两器大小是否合理?功率过高与最大制冷跳停:外侧风量是否合理?冷凝器大小是否合
8、理?冷凝器制作是否有问题(没有胀紧、叠片、倒片、片距不对)?是否冷媒过多或者毛细管过长?冷凝器流路设计不合理造成严重复热,或流路半堵,降低冷凝器性能?凝露工况不合格 低风风速是否定得过低(但风速过高会造成吹水)?室内机是否漏风?是否流路不均,严重偏流?冷媒是否不足,造成缺液蒸发室外机有冷媒流动声 毛细管组件用防振胶包住;在两个管径变化大的地方加过渡管;在过渡管处包防振胶等。异声或噪音超标 如果是风道的异声,则要改变风轮转速、安装位置或换风轮;如果是制冷系统的异声,则在固频不合格处加配重块或防振胶改变其固频;在配管振动大的地方贴防振胶;在压缩机排气管上加消声器;压缩机包隔音棉;钣金件上贴隔音棉等
9、,问题与解决方法,压缩机运行中常见的故障:,缺油与润滑不足损坏 电机损坏液击损坏高温损坏,避免缺油与润滑不足损坏的要点,适当的压缩机注油量适当的冷冻机油粘度防止过度的过湿运转防止过度的过热运转,压缩机常见的缺油故障,压缩机长时间缺油机构部和各摩擦副过热,导致轴承烧结、抱轴。压缩机短时间缺油机构部和各摩擦副异常磨损,导致振动、噪音大。,如何保证适当的油量,压缩机在排出冷媒时,也会排出微量的冷冻机油。即使只有0.5%的上油率,如果油不能通过系统循环回到压缩机中,若以5HP为例,循环量在ARI工况下约为330kg/h,则在50分钟就可以将压缩机内的油全部带出,大约在25小时内压缩机将会烧坏。因此为了
10、确保压缩机运行不缺油,应该从以下二方面着手:1.确保排出压缩机的冷冻机油回到压缩机;2.减少压缩机的上油率;,确保排出压缩机的冷冻机油回到压缩机,应确保吸气管冷媒的流速(约6m/s),才能使油回到压缩机,但最高流速应小于15m/s,以减小压降与流动噪音,对水平管还应沿冷媒流动方向有向下的坡度,约0.8cm/m.防止冷冻机油滞留在蒸发器内确保适当的气液分离器的回油孔,过大会造成湿压缩,过小则会回油不足,滞流油在气液分离器中系统中不应存在使油滞留的部位确保在长配管高落差的情况下有足够的冷冻机油在压缩机里,通常用带油面镜的压缩机确认 压缩机频繁启动不利于回油。,如何减少压缩机的上油率,在停机时应保证
11、制冷剂不溶解到冷冻机油中(使用曲轴加热器)应避免过湿运转,因为会起泡而引起的上油过多内部设置油分离器装置压缩机内部的油起泡使油容易被带出压缩机.,长配管高落差,当配管长比容许值大时,配管内的压力损失会变大,使得蒸发器中的冷媒量减少,导致能力下降。同时,配管内有油滞留时,使得压缩机缺油,导致压缩机故障的发生。当压缩机内冷冻机油不足时,应从高压侧追加与压缩机出厂相同牌号的冷冻机油。,设置回油弯的必要性,落差超过10m15m时,应在气管侧设置回油弯管。必要性 停机时,避免附着在配管中的冷冻机油返回压缩机,引起液压缩现象。另一方面,为了防止气管回油不好导致压缩机缺油。回油弯设置间隔 每10m落差设置一
12、个回油弯。,如何确保适当冷冻机油粘度,冷冻机油和制冷剂有互溶性,停机时,制冷剂几乎全部溶解在冷冻机油中,因此需安装曲轴加热器以防止溶解。运转中不应使含有液体的制冷剂回到压缩机中,即保证压缩机吸气有过热度起动及除霜时,不应产生回液现象避免在过度过热状态下运转,避免油劣化气液分离器的回油孔大小应适当 孔径过大会吸入液体制冷剂造成过湿运转 孔径过小会使回油不顺畅,使油滞留在气液分离器中,压缩机电机损坏的主要原因,异常负荷和堵转金属屑引起的绕组短路接触器问题电源缺相和电压异常冷却不足用压缩机抽真空,导致异常负荷或者堵转的主要原因,压比过大,或压差过大,会使压缩过程更为困难;而润滑失效引起的摩擦阻力增加
13、,以及极端情况下的电机堵转,将大大增加电机负荷。如果负荷增大到热保护动作,而保护又是自动复位时,则会进入“堵转热保护堵转”的死循环,频繁启动和异常负荷,使绕组经受高温考验,会降低漆包线的绝缘性能。绕组绝缘性能变差后,如果有其它因素(如金属屑构成导电回路,酸性润滑油等)配合,很容易引起短路而损坏。,金属屑引起的绕组短路,金属屑的来源包括施工时留下的铜管屑、焊渣、压缩机内部磨损和零部件损坏时掉下的金属屑等。在工作时,在气流的带动下,这些金属屑或碎粒会落在绕组上。压缩机运转时的正常振动,以及每次启动时绕组受电磁力作用而扭动,都会促使夹杂于绕组间的金属屑与绕组漆包线之间的相对运动和摩擦。棱角锐利的金属
14、屑会划伤漆包线绝缘层,引起短路,导致电机烧毁。,接触器问题,为了安全可靠,压缩机接触器要同时断开三相电路。接触器必须能满足苛刻的条件,如快速循环,持续超载和低电压。它们必须有足够大的面积以散发负载电流所产生的热量,触点材料的选择必须在启动或堵转等大电流情况下能防止焊合。否则接触器触点焊合后,依赖接触器断开压缩机电源回路的所有控制(比如高低压控制,温度控制,融霜控制等)将全部失效,压缩机处于无保护状态。因此,当电机烧毁后,检查接触器是必不可少的工序。,电源缺相和电压异常,电源电压变化范围不能超过额定电压的10%。三相间的电压不平衡不能超过3。如果发生缺相时压缩机正在运转,它将继续运行但会有大的负
15、载电流。电机绕组会很快过热,正常情况下压缩机会被热保护。当电机绕组冷却至设定温度,接触器会闭合,但压缩机启动不起来,出现堵转,并进入“堵转热保护堵转”死循环。如果缺相发生压缩机启动时,压缩机将启动不起来,出现堵转,进入“堵转热保护堵转”死循环。电压不平衡百分数计算方法为,相电压与三相电压平均值的最大偏差值与三相电压平均值比值.作为电压不平衡的结果,在正常运行时负载电流的不平衡是电压不平衡百分点数的410倍。,压缩机电机冷却不足,制冷剂大量泄漏或者蒸发压力低时会造成系统质量流减小,使得电机无法得到良好的冷却,电机过热后会出现频繁保护。,用压缩机抽真空导致压缩机电机损坏,空气起着绝缘介质的作用。密
16、闭容器内抽真空后,里面的电极之间的放电现象就很容易发生(真空放电)。因此,随着压缩机壳体内的真空度的加深,壳内裸露的接线柱之间或绝缘层有微小破损的绕组之间失去了绝缘介质,一旦通电,电机可能在瞬间内短路烧毁。如果壳体漏电,还可能造成人员触电。因此,禁止用压缩机抽真空,并且在系统和压缩机处于真空状态时(抽完真空还没有加制冷剂时),严禁给压缩机通电。,压缩机液击损坏的主要原因,回液,即从蒸发器中流回压缩机的液态制冷剂或润滑油带液启动压缩机内的润滑油太多,回液导致压缩机损坏的主要原因,回液,就很容易引发液击事故。即使没有引起液击,高压腔结构的回液将稀释或冲刷掉滑动面的润滑油,加剧磨损。低压腔结构的回液
17、会稀释油池内的润滑油。含有大量液态制冷剂的润滑油粘度低,在摩擦面不能形成足够的油膜,导致运动件的快速磨损。另外,润滑油中的制冷剂在输送过程中遇热会沸腾,影响润滑油的正常输送。而距离油泵越远,问题就越明显越严重。如果电机端的轴承发生严重的磨损,曲轴可能向一侧沉降,容易导致定子扫膛及电机烧毁。对于回液较难避免的制冷系统,安装气液分离器和采用抽空停机控制可以有效阻止或降低回液的危害。,带液启动导致压缩机损坏的主要原因,在油视镜上可以清晰地观察到带液启动时有起泡现象。带液启动的根本原因是润滑油中溶解的以及沉在润滑油下面了大量的制冷剂,在压力突然降低时突然沸腾,并引起润滑油的起泡现象。带液启动的制冷剂是
18、以“制冷剂迁移”的方式进入曲轴箱的。由于润滑油中的制冷剂蒸汽分压低,就会吸收油面上的制冷剂蒸气,造成油池中气压低于蒸发器气压的现象。油温愈低,蒸汽压力越低,对制冷剂蒸汽的的吸收力就愈大。系统中的蒸汽就会慢慢向压缩机“迁移”。停机时间越长,迁移到润滑油中的制冷剂就会越多。制冷剂迁移会稀释润滑油。对低压腔还容易引起液击。液态冷媒或者油与冷媒的混合物都 不是良好的润滑剂,会造成磨损甚至卡死。此时由于电机浸在液体中,电机上的过载保护器不会动作。安装曲轴箱加热器、气液分离器和采用抽空停机控制可以有效阻止或降低制冷剂迁移,润滑油太多导致压缩机液击损坏,对低压腔压缩机,高速旋转的部件如转子,会频繁撞击油面,
19、如果油面过高,引起润滑油大量飞溅。飞溅的润滑油一旦窜入进气道,带入气缸,就可能引起液击。,压缩机高温损坏的主要原因,由于超范围使用、电源不正常、电机过载、制冷剂泄漏、冷凝压力太高等问题引起的电机高温、排气温度过高、润滑油焦糊等过热现象。压缩机表面温度是判断压缩机是否过热的重要指标之一。如果表面温度超过135C,一般认为压缩机已经处于严重过热状态;而如果表面温度低于120C,压缩机温度正常。,电机高温的主要原因,电机发热量大 供电不正常会引起电机发热量增大,如:电压不稳、电压太低或太高、电压不平衡、缺相等都属于电源供电不正常。压缩机频繁启动、连杆抱轴、活塞咬缸、润滑不足或缺油等问题均会大大增加发热量。超范围使用压缩机很容易引起电机过热和损坏 电机冷却不足 蒸发温度低,制冷剂质量流量小导致电机冷却不足。制冷剂泄漏量比较大时,也会制冷剂质量流量小导 致电机冷却不足。,排气温度过高的主要原因,排气温度过热的原因主要有以下几种:回气温度高、电机加热量大、压缩比高、冷凝压力高、制冷剂选择不当。,谢谢大家!欢迎批评指正!,
链接地址:https://www.31ppt.com/p-6310133.html