时间序列计量经济学一-平稳性及其检验.ppt
《时间序列计量经济学一-平稳性及其检验.ppt》由会员分享,可在线阅读,更多相关《时间序列计量经济学一-平稳性及其检验.ppt(87页珍藏版)》请在三一办公上搜索。
1、,计 量 经 济 学 基 础 与 应 用,第十四章 时间序列的平稳性及其检验,时间序列计量经济学基础篇,第十四章 时间序列的平稳性及其检验第十五章 随机时间序列分析模型第十六章 协整分析与误差修正模型,第十四章 时间序列的平稳性及其检验,第一节 非平稳变量与经典回归模型第二节 时间序列数据的平稳性第三节 平稳性的图示判断第四节 平稳性的单位根检验第五节 单整、趋势平稳与差分平稳随机过程,第一节 非平稳变量与经典回归模型,到目前为止,经典计量经济模型常用到的数据有:时间序列数据(time-series data);截面数据(cross-sectional data)平行/面板数据(panel d
2、ata)时间序列数据是最常见,也是最常用到的数据。,经典回归模型与数据的平稳性,经典回归分析暗含着一个重要假设:数据是平稳的。数据非平稳,大样本下的统计推断基础“一致性”要求被破怀。经典回归分析的假设之一:解释变量X是非随机变量,第一节 非平稳变量与经典回归模型,依概率收敛:,(2),放宽该假设:X是随机变量,则需进一步要求:(1)X与随机扰动项 u 不相关Cov(X,u)=0,第(2)条是为了满足统计推断中大样本下的“一致性”特性:,第(1)条是OLS估计的需要,第一节 非平稳变量与经典回归模型,如果X是非平稳数据(如表现出向上的趋势),则(2)不成立,回归估计量不满足“一致性”,基于大样本
3、的统计推断也就遇到麻烦。,因此:,注意:在双变量模型中:,第一节 非平稳变量与经典回归模型,表现在:两个本来没有任何因果关系的变量,却有很高的相关性(有较高的R2)。例如:如果有两列时间序列数据表现出一致的变化趋势(非平稳的),即使它们没有任何有意义的关系,但进行回归也可表现出较高的决定系数。,数据非平稳,往往导致出现“虚假回归”问题,第一节 非平稳变量与经典回归模型,在现实经济生活中,实际的时间序列数据往往是非平稳的,而且主要的经济变量如消费、收入、价格往往表现为一致的上升或下降。这样,仍然通过经典的因果关系模型进行分析,一般不会得到有意义的结果。,第一节 非平稳变量与经典回归模型,时间序列
4、分析模型方法就是在这样的情况下,以通过揭示时间序列自身的变化规律为主线而发展起来的全新的计量经济学方法论。,第二节 时间序列数据的平稳性,假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列Xt(t=1,2,)的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:1)均值E(Xt)=u是与时间t 无关的常数;2)方差Var(Xt)=2是与时间t 无关的常数;3)协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关,与时间t 无关的常数;则称该随机时间序列是平稳的(stationary),而该随机过程是一平稳随机过程(stationary st
5、ochastic process)。,例1 一个最简单的随机时间序列是一具有零均值同方差的独立分布序列:Xt=ut,utN(0,2),该序列常被称为是一个白噪声(white noise)。由于Xt具有相同的均值与方差,且协方差为零,由定义,一个白噪声序列是平稳的。,第二节 时间序列数据的平稳性,例2 另一个简单的随机时间列序被称为随机游走(random walk),该序列由如下随机过程生成:Xt=Xt-1+ut 这里,ut是一个白噪声。,容易知道该序列有相同的均值:E(Xt)=E(Xt-1)为了检验该序列是否具有相同的方差,可假设Xt的初值为X0,则易知:,第二节 时间序列数据的平稳性,X1=
6、X0+u1 X2=X1+u2=X0+u1+u2 Xt=X0+u1+u2+ut 由于X0为常数,ut是一个白噪声,因此:var(Xt)=t2即Xt的方差与时间t有关而非常数,它是一非平稳序列。,第二节 时间序列数据的平稳性,然而,对X取一阶差分(first difference):Xt=Xt-Xt-1=ut由于ut是一个白噪声,则序列 Xt 是平稳的。,后面将会看到:如果一个时间序列是非平稳的,它常常可通过取差分的方法而形成平稳序列。,第二节 时间序列数据的平稳性,事实上,随机游走过程是我们称之为1阶自回归AR(1)过程的特例:Xt=Xt-1+ut 不难验证:1)|1时,该随机过程生成的时间序列
7、是发散的,表现为持续上升(1)或持续下降(-1),因此是非平稳的;2)=1时,是一个随机游走过程,也是非平稳的。,第二节 时间序列数据的平稳性,后面将证明:只有当-11时,该随机过程才是平稳的。,1阶自回归过程AR(1)又是如下k阶自回归AR(k)过程的特例:Xt=1Xt-1+2Xt-2+kXt-k+ut该随机过程平稳性条件将在后面介绍。,第二节 时间序列数据的平稳性,第三节 平稳性检验的图示判断,给出一个随机时间序列,首先可通过该序列的时间路径图来粗略地判断它是否是平稳的。一个平稳的时间序列在图形上往往表现出一种围绕其均值不断波动的过程。而非平稳序列则往往表现出在不同的时间段具有不同的均值(
8、如持续上升或持续下降)。,第三节 平稳性检验的图示判断,t t,(a)(b),图1,平稳时间序列与非平稳时间序列图,进一步的判断:检验样本自相关函数及其图形,定义随机时间序列滞后k期的自相关函数(autocorrelation function,ACF)如下:k=k/0=滞后k期的协方差/方差 可以证明:ACF是关于滞后期k的递减函数。实际上,对一个随机过程只有一个实现(样本),因此,只能计算样本自相关函数(Sample autocorrelation function)。,第三节 平稳性检验的图示判断,一个时间序列的样本自相关函数定义为:,可以证明:随着k的增加,样本自相关函数下降且趋于零。
9、但从下降速度来看,平稳序列要比非平稳序列快得多。,第三节 平稳性检验的图示判断,第三节 平稳性检验的图示判断,1 1,0,k,0,k,(a)(b),图2,平稳时间序列与非平稳时间序列样本相关图,注 意:,确定样本自相关函数rk某一数值是否足够接近于0是非常有用的,因为它可检验对应的自相关函数k的真值是否为0的假设。Bartlett曾证明:如果时间序列由白噪声过程生成,则对所有的k0,样本自相关系数rk近似地服从以0为均值,1/n 为方差的正态分布,其中n为样本数。,也可检验对所有k0,自相关系数都为0的联合假设。这可通过如下QLB统计量进行:,第三节 平稳性检验的图示判断,该统计量近似地服从自
10、由度为m的2分布(m为滞后长度)。因此,如果计算的Q值大于显著性水平为的临界值,则有1-的把握拒绝所有k(k0)同时为0的假设。例3 表1序列Random1是通过一随机过程(随机函数)生成的有19个样本的随机时间序列。,第三节 平稳性检验的图示判断,容易验证:该样本序列的均值为0,方差为0.0789。,从图形看:它在其样本均值0附近上下波动,且样本自相关系数迅速下降到0,随后在0附近波动且逐渐收敛于0。,第三节 平稳性检验的图示判断,第三节 平稳性检验的图示判断,由于该序列由一随机过程生成,可以认为不存在序列相关性,因此该序列为白噪声。,根据Bartlett的理论:kN(0,1/19),因此任
11、一rk(k0)的95%的置信区间都将是:,第三节 平稳性检验的图示判断,可以看出:k0时,rk的值确实落在了该区间内,因此可以接受k(k0)为0的假设。同样地,从QLB统计量的计算值看,滞后17期的计算值为26.38,未超过5%显著性水平的临界值27.58,因此,可以接受所有的自相关系数k(k0)都为0的假设。因此,该随机过程是一个平稳过程。,第三节 平稳性检验的图示判断,序列Random2是由一随机游走过程 Xt=Xt-1+ut生成的一随机游走时间序列样本。其中,第0项取值为0(X0=0),ut是由Random1表示的白噪声。,第三节 平稳性检验的图示判断,第三节 平稳性检验的图示判断,从样
12、本自相关图看,虽然自相关系数迅速下降到0,但随着时间的推移,则在0附近波动且呈发散趋势。样本自相关系数显示:r1=0.48,落在了区间-0.4497,0.4497之外,因此在5%的显著性水平上拒绝1的真值为0的假设。该随机游走序列是非平稳的。,第三节 平稳性检验的图示判断,例4 检验中国支出法GDP时间序列的平稳性,表2 19782000年中国支出法GDP(单位:亿元),第三节 平稳性检验的图示判断,第三节 平稳性检验的图示判断,图,5,1978,-2000,年中国,GDP,时间序列及其样本自相关图,图形:表现出了一个持续上升的过程,可初步判断是非平稳的。样本自相关系数:缓慢下降,再次表明它的
13、非平稳性。,第三节 平稳性检验的图示判断,从滞后18期的QLB统计量看:QLB(18)=57.1828.86=20.05 拒绝该时间序列的自相关系数在滞后1期之后的值全部为0的假设。结论:19782000年间中国GDP时间序列是非平稳序列。,第三节 平稳性检验的图示判断,例5 人均居民消费与人均国内生产总值这两时间序列的平稳性,原图 样本自相关图,第三节 平稳性检验的图示判断,从图形上看:人均居民消费与人均国内生产总值都是是非平稳的。,从滞后14期的QLB统计量看:人均居民消费与人均国内生产总值序列的统计量计算值均为57.18,超过了显著性水平为5%时的临界值23.68。再次表明它们的非平稳性
14、。,第三节 平稳性检验的图示判断,就此来说,运用传统的回归方法建立它们的回归方程是无实际意义的。不过,第三节中将看到,如果两个非平稳时间序列是协整的,则传统的回归结果却是有意义的,而这两时间序列恰是协整的。,第三节 平稳性检验的图示判断,对时间序列的平稳性除了通过图形直观判断外,运用统计量进行统计检验则是更为准确与重要的。单位根检验(unit root test)是统计检验中普遍应用的一种检验方法。1、DF检验 随机游走序列:Xt=Xt-1+ut 是非平稳的其中ut是白噪声。而该序列可看成是随机模型:Xt=Xt-1+ut 中参数=1时的情形。,第四节 平稳性的单位根检验,(*)式可变形式成差分
15、形式:Xt=(1-)Xt-1+ut=Xt-1+u t(*)检验(*)式是否存在单位根=1,也可通过(*)式判断是否有=0。,对式:Xt=Xt-1+ut(*)进行回归,如果确实发现=1,就说随机变量Xt有一个单位根。,第四节 平稳性的单位根检验,一般地:,检验一个时间序列Xt的平稳性,可通过检验带有截距项的一阶自回归模型:Xt=+Xt-1+ut(*)中的参数是否小于1。,或者:检验其等价变形式:Xt=+Xt-1+ut(*)中的参数是否小于0。,第四节 平稳性的单位根检验,后面将证明,(*)式中的参数1或=1时,时间序列是非平稳的;对应于(*)式,则是0或=0。,因此,针对式:Xt=+Xt-1+u
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 时间 序列 计量 经济学 平稳 及其 检验
链接地址:https://www.31ppt.com/p-6299323.html