数学选修数系的扩充和复数的引入.ppt
《数学选修数系的扩充和复数的引入.ppt》由会员分享,可在线阅读,更多相关《数学选修数系的扩充和复数的引入.ppt(42页珍藏版)》请在三一办公上搜索。
1、第三章 阶段复习课,一、数系的扩充和复数的概念1.复数的概念形如a+bi(a,bR)的数叫做复数,通常记为z=a+bi(复数的代数形式),其中i叫虚数单位(i2=-1),a叫实部,b叫虚部,数集C=a+bi|a,bR叫做复数集.,2.复数的分类(1)(2)集合表示:,3.复数相等的充要条件a+bi与c+di相等的充要条件是a=c且b=d(a,b,c,dR).4.复平面建立直角坐标系来表示复数的平面,叫做复平面.x轴叫做实轴,y轴叫做虚轴.实轴上的点表示实数;除了原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数.,5.复数的几何意义(1)复数z=a+bi 复平面内的点Z(a,b)(a,
2、bR);(2)复数z=a+bi 平面向量(a,bR).6.复数的模向量 的模r叫做复数z=a+bi的模,记作|z|或|a+bi|,即|z|=|a+bi|=r=(r0,rR,a,bR).,【辨析】复数、复平面内的点、复平面内的向量 任意一个复数都可以由它的实部和虚部唯一确定,当把实部、虚部看成有序数对时就对应复平面内的一个点,每一个点都对应一个以原点为起点,以该点为终点的向量,所以复数、复平面内的点、复平面内的向量是统一的.,二、复数代数形式的四则运算1.复数的运算(1)复数的加、减、乘、除运算法则.设z1=a+bi,z2=c+di(a,b,c,dR),则,(2)对复数运算法则的认识.复数代数形
3、式的加减运算,其运算法则是对它们的实部与虚部分别进行加减运算,在运算过程中应注意分清每一个复数的实部与虚部.复数加法法则的合理性:()当b=0,d=0时,与实数加法法则一致.()加法交换律和结合律在复数集中仍成立.()符合向量加法的平行四边形法则.,(3)复数满足的运算律:复数的加法满足交换律、结合律,即对任意z1,z2,z3C,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).复数的乘法满足交换律、结合律及乘法对加法的分配律,即对任意z1,z2,z3C,有z1z2=z2z1,(z1z2)z3=z1(z2z3),z1(z2+z3)=z1z2+z1z3.,(4)复数加减法的几
4、何意义.复数加法的几何意义:复数的加法可以按照向量的加法来进行(满足平行四边形、三角形法则).复数的减法运算也可以按向量的减法来进行.,2几个重要的结论(1)|z1+z2|2+|z1-z2|2=2(|z1|2+|z2|2).(2)z=|z|2=|2.(3)若z为虚数,则|z|2z2.(4)i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i,nN*.,3.共轭复数的性质复数z=a+bi的共轭复数=a-bi.(1)z R.(2)=z.(3)任一实数的共轭复数仍是它本身;反之,若z=则z是实数.(4)共轭复数对应的点关于实轴对称.4.巧用向量解复数问题复数的加减运算可转化为向量的加减运算
5、.,请你根据下面的体系图快速回顾本章内容,从备选答案中选择准确选项,填在图中的相应位置,构建出清晰的知识网络吧.,一、复数的概念与分类 形如a+bi(a,bR)的数,称为复数,所有复数构成的集合称复数集,通常用C来表示.设z=a+bi(a,bR),则(1)z是虚数b0;(2)z是纯虚数;(3)z是实数b=0.,【例1】(2012无锡高二检测)已知复数z=m(m+1)+mi,i为虚数单位,mR.(1)当复数z为纯虚数时,求m的值;(2)当复数z在复平面上的对应点在第二、四象限角平分线上时,求m的值;(3)若(1+i)z=1+3i,求|z|.,【解析】(1)由题意得 m=-1,当m=-1时,z是纯
6、虚数.(2)由题意得m2+m=-m,解得m=0或m=-2.(3)(1+i)z=1+3i,|(1+i)z|=|1+3i|,|z|=|z|=,二、复数的四则运算 复数加减乘除运算的实质是实数的加减乘除,加减法是对应实部、虚部相加减,而乘法类比多项式乘法,除法类比根式的分母有理化,要注意i2=-1,i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1,(1+i)2=2i,(1-i)2=-2i,=-i,=i.,【例2】计算:(1)(2)【解析】(1)原式=(2)原式,【例3】已知复数z zai(aR),当|时,求a的取值范围,【解析】zai1iai1(a1)i,a22a20,1 a1故a的取
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 选修 扩充 复数 引入
链接地址:https://www.31ppt.com/p-6296135.html