数学建模竞赛相关知识介绍.ppt
《数学建模竞赛相关知识介绍.ppt》由会员分享,可在线阅读,更多相关《数学建模竞赛相关知识介绍.ppt(33页珍藏版)》请在三一办公上搜索。
1、数学建模知识的简介,1.数模竞赛的起源历史及参赛规则简介2.数学建模的定义3.数学建模竞赛与纯数学竞赛区别4.学习数学建模的目的5.数学模型及数学建模的步骤6.全国大学生数学建模竞赛应注意的问题7.数学建模应用,内容简介,一、数模竞赛的起源历史及参赛规则简介,数模竞赛是由美国工业与应用数学学会在1985年发起的一项大学生竞赛活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。我国大学生数学建模竞赛是由教育部高教司和中国工业与数学学会主办
2、、面向全国高等院校的、每年一届的通讯竞赛。其宗旨是:创新意 识、团队精神、重在参与、公平竞争。,1992载在中国创办,自从创办以来,得到了教育部高教司和中国工业与应用数学协会的得力支持和关心,呈现出迅速的发展发展势头,就2003年来说,报名阶段须然受到“非典”影响,但是全国30个省(市、自治区)及香港的637所院校就有5406队参赛,在职业技术学院增加更快,参赛高校由2002年的1067所上升到了2003年的1410所。可以说:数学建模已经成为全国高校规模最大课外科技活动。,竞赛以三名学生组成一个队,赛前有指导教师培训。赛题来源于实际问题。比赛时要求就选定的赛题每个队在连续三天的时间里写出论文
3、,它包括:问题的适当阐述;合理的假设;模型的分析、建立、求解、验证;结果的分析;模型优缺点讨论等。,数学建模竞赛宗旨是鼓励大学师生对范围并不固定的各种实际问题予以阐明、分析并提出解法,通过这样一种方式鼓励师生积极参与并强调实现完整的模型构造的过程。以竞赛的方式培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。,他还可以培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。这项赛事自诞生起
4、就引起了越来越多的关注,逐渐有其他国家的高校参加。我国自1989年起陆续有高校参加美国大学生数学建模竞赛。1992年起我国开始举办自己的大学生数学建模竞赛,并成为国家教育部组织的全国大学生四项学科竞赛之一,二、数学建模的定义,数学建模:是指对现实世界的一特定对象,为了某特定目的,做出一些重要的简化和假设,运用适当的数学工具得到一个数学结构,用它来解释特定现象的现实性态,预测对象的未来状况,提供处理对象的优化决策和控制,设计满足某种需要的产品等。,一般来说数学建模过程可用如下框图来表明:,数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。
5、,例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代辅予更为重要的意义.,三、数学建模竞赛与纯数学竞赛区别,数学建模竞赛名曰数学,当然要用到数学知识,但却与以往所说的那种数学竞赛(那种纯数学竞赛)不同。它要用到计算机,甚至离不开计算机,但却不是纯粹的计算机竞赛,它涉及物理,化学,生物,电子,农业,管理等各学科,各领域的知识,但
6、也不是这些学科领域里的纯知识竞赛。它涉及各学科,各领域,但又不受任何一个具体的学科,领域的局限。它要用到各方面的综合的知识,但还不限此。选手们不只是要有各方面的知识,还要有驾域这些知识,应用这些知识处理实际问题的能力。知识是无止境的,你还必须有善于获得新的知识的能力。总之,数学建模竞赛,即要比赛各方面的综合知识,也比赛各方面的综合能力。它的特点就是综合,它的优点也是综合。,在这个意义上看,它与任何一个学科领域内的知识竞赛都不相同的特点就是不纯,它的优点也就是不纯,综合就是不纯。纯数学竞赛,如中学生的国际数学奥林匹克竞赛,或美国大学生的普特南数学竞赛,已经有很长的历史,也为大家所熟悉。特别是近若
7、干年来我国选手在国际数学奥林匹克竞赛中年年取得好成绩,更使这项竞赛在我国有很高的知名度,在全国各地的质量教高的中学中广泛开展。纯数学竞赛主要考核选手对数学基础知识的掌握情况逻辑推理及证明的能力和技巧思维是否敏捷,计算能力的强弱等。试题都是纯数学问题,考试方式是闭卷考试。参赛学生在规定的时间(一般每次为三小时)内独立做题,不准交头接耳相互讨论,不准看任何书籍和参考资料,不准用计算机(器)。考题都有标准答案。,当然,选手的解答方法可以与标准答案不同,但其解答方法的正确与否也是绝对的,特别是计算题的得数一定要与标准答案相同。考试结果,对每个选手的答案给出分数,按分数高低来判定优劣。尽管也要对参赛的团
8、体(代表一个国家,地区或学校)计算团体总分,但这个团体总分也是将每个团体的选手得分加起来得到的,在比赛过程中同一团体的选手们绝对不能互相帮助。因此,这样的竞赛从本质上说是个人赛而不是团体赛。团体要获胜主要靠每名选手个自的水平高低而不存在互相配合的问题(当然在训练过程中可以互相帮助)。这样的竞赛,对于吸引青年人热爱数学从而走上数学研究的道路,对于培养数学家和数学专门人才,起了很大的作用。,模型可以说是对某种事物的一种仿制品。比如飞机模型,就是模仿飞机造出来的。既然是仿造,就不是真的,只能是假冒,但不能是伪劣,必须真实地反映所模仿的对象的某一方面的属性。如果只是模仿飞机的模样,这样的飞机模型只要看
9、起像飞机就行了,可以摆在展览馆供人参观,照相,但不能飞。如果要模仿飞机的飞行原理,就得造一个能飞起来的飞机模型,比如航空模型比赛的作品,它在空气中的飞行原理与飞机有相同之处。但当然不像飞机那样靠烧燃料来飞行,外观上也不必那么像飞机,可见,模型所模仿的都只是真实事物的某一方面的属性。而数学模型,就是用数学语言(可能包括数学公式)去描述和模仿实际问题中的数量关系,空间形式等。,这种模仿当然是近似的,但又要尽可能的逼真。实际问题中的许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素,数学模型建立起来后,实际问题化成数学问题,就可
10、以用数学工具,数学方法去解答。如果有现成的数学工具当然好。如果没有现成的数学工具,就促使数学家们(也包括建立数学模型的人)寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展。例如,开普勒由行星运动的观测数据总结出开普勒三定理(这就是行星运行的数学模型),牛顿试图用自己发现的力学定理去解释它,但当时的数学工具是不够用的,这使了微积分的发明。求解数学模型,除了用到数学推理以外,通常还要处理大量数据,,进行大量计算。这在电子计算机发明之前是很难实现的。因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁。而计算机的出现和迅速发展,给用数学模型解决
11、实际问题打开了广阔的道路。而在现在,要真正解决一个实际问题,离了计算机几乎是不行的。数学模型建立起来了,也用数学方法或数据方法求出了解答,是不是就万事大吉了呢?不是。既然数学模型只能近似地反映实际问题中的关系和规律,到底反应的好不好,还需要接受检验。如果数学模型建立的不好,如果没有正确地描述所给的实际问题,数学解答再正确也是没有用的。,因此,在得出数学解答之后还要让所得的结论接受实际的考察,看它是否合理,是否可行。如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才算是得到一个解答,可以先付诸实施,但是,十全十美的答案是没有的,已得到的答案一定还有改进的余地,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 竞赛 相关 知识 介绍
链接地址:https://www.31ppt.com/p-6295635.html