数值分析积分(上).ppt
《数值分析积分(上).ppt》由会员分享,可在线阅读,更多相关《数值分析积分(上).ppt(76页珍藏版)》请在三一办公上搜索。
1、第七章,数值积分与微 分(上),第七章目录,1 数值积分的基本概念 1.1构造数值求积公式的基本思想 1.2代数精度 1.3插值型求积公式2 牛顿一柯特斯(Newton-Cotes)公式 2.1牛顿一柯特斯公式 2.2几种低价N-C求积公式的余项 2.3牛顿一柯特斯公式的稳定性和收敛性3 复化求积公式 3.1复化梯形公式 3.2复化Simpson公式与复化Cotes公式,第七章目录,4 变步长方法(逐次分半算法)4.1 梯形公式的逐次分半算法 4.2 Simpson公式的逐次分半算法5 龙贝格(Romberg)求积公式 5.1外推法 5.2 Romberg求积公式6 高斯(Gauss)型求积公
2、式7 数值微分,序(1),计算定积分 的值是经常遇到的一个问题,由微积分理论知道:只要求出f(x)的一个原函数F(x),就可以利用牛顿莱布尼慈(Newton-Leibniz)公式出定积分值:,但是,在工程技术领域,在实际使用上述求积分方法时,往往会遇到下面情况:,1.函数f(x)没有具体的解析表达式,只有一些由实验 测试数据形成的表格或 图形。,序(2),3.f(x)的结构复杂,求原函数困难,即不定积分难求。,2.f(x)的原函数无法用初等函数表示出来,如:,由于以上种种原因,因此有必要研究积分的数值计算方法,进而建立起上机计算定积分的算法,此外,数值积分也是研究微分方程和积分方程的数值解法的
3、基础。,同样,对函数f(x)求导,也有类似的问题,需要研究数值微分方法。,1 数值积分的基本概念,1.1 构造数值求积公式的基本思想,定积分I=ab f(x)dx在几何上为x=a,x=b,y=0和y=f(x)所围成的曲边梯形的面积。定积分计算之所以困难,就在于这个曲边梯形中有一条边y=f(x)是曲边,而不是规则图形。由积分中值定理,对连续函数f(x),在区间a,b 内至少存在一点,使:,也就是说,曲边梯形的面积I 恰好等于底为(b-a),高为f()的规则图形矩形的面积(图7-1),f()为曲边梯形的平均高度,然而点的具体位置一般是不知道的,因此难以准确地求出f()的值。但是,由此可以得到这样的
4、启发,只要能对平均高度f()提供一种近似算法,便可以相应地得到一种数值求积公式。,构造数值求积公式的基本思想(续),如,用两端点的函数值f(a)与f(b)取算术平均值作为平均高度f()的近似值,这样可导出求积公式:,更一般地,可以在区间a,b 上适当选取某些点xk(k=0,1,n),然后用f(xk)的加权平均值近似地表示f(),这样得到一般的求积公式:,其中,点xk 称为求积节点,系数Ak 称为求积系数,Ak 仅仅与节点xk 的选取有关,而不依赖于被积函数f(x)的具体形式,即xk决定了,Ak也就相应的决定了。,构造数值求积公式的基本思想(续1),回顾定积分的定义,积分值I 是和式的极限:,其
5、中xk是a,b 的每一个分割小区间的长度,它与f(x)无关,去掉极限,由此得到近似计算公式:,因此,式(7-1)可作为一般的求积公式,其特点是将积分问题归结为函数值的计算,从而避开了使用牛顿一莱布尼慈公式需要求原函数的困难,适合于函数给出时计算积分,也非常便于设计算法。便于上机计算。求积公式(7-1)的截断误差为:,Rn也称为积分余项。,1.2 代数精度,数值积分是一种近似方法,但其中有的公式能对较多的函数准确成立,而有的公式只对较少的函数准确成立。为了反映数值积分公式在这方面的差别,引入代数精度的概念。,定义1,如果某个求积公式对所有次数不大于m的多项式都精确成立,而至少对一个m+1次多项式
6、不精确成,则称该公式具有m次代数精度。,一般来说,代数精度越高,求积公式越好。为了便于应用,由定义1容易得到下面定理。,定理1,一个求积公式具有m次代数精度的充分必要条件是该求积公式对 1,x,x2,xm 精确成立,而对xm+1不精确成立。,代数精度(续1),试验证梯形公式具有一次代数精度。,例1,同理可证明矩形公式的代数精度也是一次的,代数精度(续2),上述过程表明,可以从代数精度的角度出发来构造求积公式。例如,对于求积公式(7-1),若事先选定一组求积节点xk(k=0,1,n,),xk可以选为等距点,也可以选为非等距点,则可令公式对f(x)=1,x,xn 精确成立,即得:,这是关于A0、A
7、1、An的线性方程组,系数行列式为范德蒙行列式,其值不等于零,故方程组存在唯一的一组解。求解该方程组即可确定求积系数Ak,所得到的求积公式(7-1)至少具有n次代数精度。,代数精度举例,例2,确定求积公式,使其具有尽可能高的代数精度。,解求积公式中含有三个待定参数,可假定近似式(7-3)的代数精度为m=2,则当f(x)=1,x,x2时,式(7-3)应准确成立,即有:,代回去可得:,公式(7-4)不仅对特殊的次数不高于3次的多项式f(x)=1,x,x2,x3准确成立,而且对任意次数不高于3次的多项式,a0+a1x+a2x2+a2x3(f(x)=1,x,x2,x3的线性组合)也准确成立,事实上,令
8、R(f)表式(7-4)的截断误差:,检查(7-4)对 m=3 是否成立,为此,令 f(x)=x3 代入(7-4),此时左边。,再检查(7-4)对m=4是否成立,令f(x)=x4代入(7-4),此时:,因此近似式(7-4)的代数精度为m=3.,代数精度举例(续1),由于对任意的常数,和函数f(x),g(x)成立:,这表明,误差对f(x)=1,x,x2,x3准确成立,则对它们的任意线性组合a0+a1x+a2x2+a3x3也准确成立,所以通常检查一个求积公式是否具有m次代数精度,只需检查对f(x)=1,x,xm 是否准确成立即可。,上述方法称为待定系数法!,代数精度举例(续2),待定系数法注释,注1
9、:由待定系数法确定的求积公式没有确切的误差估计式,只能从其所具有的代数精度去判定求积公式的准确程度。,注2:因此,希望由待定系数法确定的求积公式的代数精度越高越好,通常的方法是要确定n+1个待定系数。可设求积公式具有n次代数精度,去建立n+1个方程求解,否则的话,只设其具有0次代数精度,建立1个方程也可以求出n+1个待定参数.,上述方法称为待定系数法,在具有尽可能高的代数精度的要求下,利用它可以得出各种求积公式。,1.3 插值型求积公式,其中lk(x)为插值基函数。取f(x)Ln(x),则有:,记:,则有:,设给定一组节点a x0 x1 xn-1xn b,且已知f(x)在这些节点上的函数值,则
10、可求 得f(x)的拉格朗日插值多项式:,插值型求积公式(续),这种求积系数由式(7-5)所确定的求积公式称为插值型求积公式。,根据插值余项定理,插值型求积公式的求积余项为:,其中a,b 且与x有关。在插值中,因f(x)不知道,所以无法估计插值误差。而在这里,f(x)作为被积函数,式(7-6)却可以用于估计积分的误差。,插值型求积公式代数精度定理,关于插值型求积公式的代数精度,有如下定理。,具有n+1个节点的数值求积公式(7-1)是插值型求积公式的充分必要条件是该公式至少具有n次代数精度。,定理2,证:(充分性)设求积公式(7-1)至少具有n次代数精度,那么,由于插值基函数 li(x)(i=0,
11、1,n)均是次数为n的多项式,故式(7-1)对li(x)精确成立,即:,定理2(续),(必要性)设求积公式(7-1)是插值型的,则对所有次数不大于n的多项式f(x),按(7-6)其求积余项Rn=0,即公式是精确成立的。由定义1知求积公式至少具有n次代数精度。(证毕),定理2说明,当求积公式(7-1)选定求积节点xk后,确定求积系数Ak有两条可供选择的途径:求解线性方程 组(7-2)或者计算积分(7-5)。由此得到的求积公式都是插值型的,其代数精度均不小于n次。,插值型求积公式举例,例3,考察求积公式:,具有几次代数精度。,此例说明三个节点的求积公式不一定具有二次数精度,其原因是此求积公式不是插
12、值型的。,2 牛顿一柯特斯(Newton-Cotes)公式,本节介绍求积节点等距分布时的插值型求积公式,即牛顿一柯特斯(Newton-Cotes)公式。,2.1 牛顿一柯特斯(Newton-Cotes)公式,设将积分区间a,b 划分为n等分,步长h=(b-a)/n,求积节点取为xk=a+kh(k=0,1,n),由此构造插值型求积公式,则其求积系数为:,牛顿一柯特斯(Newton-Cotes)公式(续),称之为n阶牛顿一柯特斯(Newton-Cotes)公式简记为N-C公式,称为柯特斯系数。显然,柯特斯系数与被积函数f(x)和积分区间a,b 无关,且为多项式积分,其值可以事先求出备用。表7-1中
13、给了了部分柯特斯系数。,记:,柯特斯系数,表7-1,牛顿一柯特斯(Newton-Cotes)公式(续1),经计算或查表得到柯特斯系数后,便可以写出对应的牛顿一柯特斯(Newton-Cotes)公式。,当n=1时,按公式(7-7)有:,得求积公式:,即为梯形公式,相应的求积公式:,称为辛卜生(Simpson)公式。,牛顿一柯特斯(Newton-Cotes)公式(续2),所以柯特斯公式是:,当n=4时,所得的公式称作柯特斯公式,它有五个节点,其系数:,柯特斯系数的性质,1、与积分区间无关:当n确定后,其系数和 都等于1,即:,2、对称性:,此特性由表7-1很容易看出,现就一般情况证明之。,3、柯特
14、斯系数并不永远都是正的。从表7-1可以看出当n=8时,出现了负系数,在实际计算中将使舍入误差增大,并且往往难以估计,从而牛顿一柯特斯公式的收敛性和稳定性得不到保证,因此实际计算中不用高阶的牛顿一柯特斯公式。,柯特斯系数的性质(续),2n阶Newton-Cotes公式至少具有2n+1次代数精度。,一般地,由n次插值多项式导出的n次牛顿一柯特斯公式至少具有n次代数精度,更进一步有以下结论:,定理3,(证明见下屏),N为偶时的牛柯公式的代数精度证明,上式中被积函数是奇函数,积分区间关于原点对称,故积分值为0,即:,所以2n阶N-C公式至少具有2n+1次代数精度。,N-C公式应用举例,例4,验证辛卜生
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数值 分析 积分
链接地址:https://www.31ppt.com/p-6294154.html