总结-单方程模型的诊断与检验.ppt
《总结-单方程模型的诊断与检验.ppt》由会员分享,可在线阅读,更多相关《总结-单方程模型的诊断与检验.ppt(22页珍藏版)》请在三一办公上搜索。
1、模型的诊断与检验,一、系数检验:模型总显著性的F检验、模型单个回归参数显著性的t检验检验若干线性约束条件是否成立的F检验、似然比(LR)检验、沃尔德(Wald)检验、拉格朗日乘子(LM)检验二、残差检验:自相关、异方差三、结构稳定性检验:邹(Chow)突变点检验四、变量:多重共线性、格兰杰(Granger)因果性检验,在建立模型过程中,要对模型参数以及模型的各种假定条件作检验。这些检验要通过运用统计量来完成。在第2章和第3章已经介绍过检验单个回归参数显著性的t统计量和检验模型参数总显著性的F统计量。第3章已经简要介绍了检验模型若干线性约束条件是否成立的F检验以及Granger非因果性检验。在第
2、4章介绍了模型误差项是否存在异方差的Durbin-Watson检验、White检验;模型误差项是否存在自相关的DW检验;多重共线性检验。,模型的诊断与检验,1 模型总显著性的F 检验,以多元线性回归模型,yt=0+1xt1+2xt2+k xt k+ut为例,原假设与备择假设分别是 H0:1=2=k=0;H1:j不全为零在原假设成立条件下,统计量其中SSR指回归平方和;SSE指残差平方和;k+1表示模型中被估参数个数;T 表示样本容量。判别规则是,若 F F(k,T-k-1),接受H0;若 F F(k,T-k-1),拒绝H0。(详见第3章),2 模型单个回归参数显著性的t 检验,3 检验若干线性
3、约束条件是否成立的F 检验,5沃尔德(Wald)检验,6 拉格朗日乘子(LM)检验,拉格朗日(Lagrange)乘子(LM)检验只需估计约束模型。所以当施加约束条件后模型形式变得简单时,更适用于这种检验。LM乘子检验可以检验线性约束也可以检验非线性约束条件的原假设。对于线性回归模型,通常并不是拉格朗日乘子统计量(LM)原理计算统计量的值,而是通过一个辅助回归式计算LM统计量的值。,6 拉格朗日乘子(LM)检验,LM检验的辅助回归式计算步骤如下:(1)确定LM辅助回归式的因变量。用OLS法估计约束模型,计算残差序列,并把作为LM辅助回归式的因变量。(2)确定LM辅助回归式的解释变量。例如非约束模
4、型如下式,yt=0+1 x1t+2 x2 t+k xk t+ut 把上式改写成如下形式 ut=yt-0-1 x1t-2 x2 t-k xk t 则LM辅助回归式中的解释变量按如下形式确定。-,j=0,1,k.对于非约束模型(26),LM辅助回归式中的解释变量是1,x1t,x2t,xk t。第一个解释变量1表明常数项应包括在LM辅助回归式中。,6 拉格朗日乘子(LM)检验,(3)建立LM辅助回归式,=+1 x1t+2 x2 t+k xk t+vt,其中由第一步得到。(4)用OLS法估计上式并计算可决系数R 2。(5)用第四步得到的R2计算LM统计量的值。LM=T R 2其中T表示样本容量。在零假
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 总结 方程 模型 诊断 检验
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-6286944.html