微积分学PPt标准课件28-第28讲一元微分学应用.ppt
《微积分学PPt标准课件28-第28讲一元微分学应用.ppt》由会员分享,可在线阅读,更多相关《微积分学PPt标准课件28-第28讲一元微分学应用.ppt(72页珍藏版)》请在三一办公上搜索。
1、 一元微积分学,大 学 数 学(一),第一讲 一元微积分的应用(一),脚本编写:刘楚中,教案制作:刘楚中,函数的单调性、极值,第六章 一元微积分的应用,本章学习要求:熟练掌握求函数的极值、最大最小值、判断函数的单调性、判断函数的凸凹性以及求函数拐点的方法。能运用函数的单调性、凸凹性证明不等式。掌握建立与导数和微分有关的数学模型的方法。能熟练求解相关变化率和最大、最小值的应用问题。知道平面曲线的弧微分、曲率和曲率半径的概念,并能计算平面曲线的弧微分、曲率、曲率半径和曲率中心。掌握建立与定积分有关的数学模型的方法。熟练掌握“微分元素法”,能熟练运用定积分表达和计算一些几何量与物理量:平面图形的面积
2、、旋转曲面的侧面积、平行截面面积为已知的几何体的体积、平面曲线的弧长、变力作功、液体的压力等。能利用定积分定义式计算一些极限。,第六章 一元微积分的应用,第一、二节 运用导数研究函数,一、导数的简单应用,二、函数的单调性,三、函数极值,四、函数的最大值、最小值,五、函数的凹凸性,一、导数的简单应用,解,解,解,解,在实际问题中,往往是同时出现几个变量.变量之间有确定的关系,并且它们都是另外某一个变量的函数(例如,都是时间 t 的函数.)从它们对这另一个变量的变化率之间的关系出发,由已知的一个或几个变量的变化率求出一个变量的未知的变化率,就是所谓的相关变化率问题.,解,解,解,下面我们运用函数的
3、导数(微分)来研究函数的有关性质:单调性、凹凸性、极值等,并研究如何作出函数的图形.,由拉格朗日中值定理的推论我们已经知道:,二、函数的单调性,观察下面的图形,你能得出什么结论?,综上所述,可知:,提供了判断函数单调性的方法,解,三、函 数 的 极 值,函数的极值是个局部性的概念.,我们已经知道的与函数极值有关的定理和公式:,定理,费 马Pierre de Fermat(16011665),费马,法国数学家.出身于一个商人家庭.他的祖父、父亲、叔父都从商.他的父亲是当地的第二执政官,经办着一个生意兴隆的皮革商店.费马毕业于法国奥尔良大学,以律师为职.曾任图卢兹议会会员,享有长袍贵族特权.精通
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分学 PPt 标准 课件 28 一元 微分学 应用
链接地址:https://www.31ppt.com/p-6285001.html