基本公式、直线的斜率、直线的方程.ppt
《基本公式、直线的斜率、直线的方程.ppt》由会员分享,可在线阅读,更多相关《基本公式、直线的斜率、直线的方程.ppt(87页珍藏版)》请在三一办公上搜索。
1、,1.已知A(3,5),B(4,7),C(-1,x)三点共线,则x等于()(A)-1(B)1(C)-3(D)3【解析】选C.因为 又A、B、C三点共线,所以kAB=kAC,即 解得:x=-3.,2.直线 x-y+a=0(a为常数)的倾斜角为()(A)30(B)60(C)150(D)120【解析】选B.由直线方程得y=x+a,所以斜率k=,设倾斜角为,所以tan=,又0180,所以=60.,3.A、B为数轴上的两点,B的坐标为-5,BA=-6,则A的坐标为()(A)-11(B)-1或11(C)-1(D)1或-11【解析】选A.设A的坐标为x,则BA=x-(-5)=x+5,又BA=-6,x+5=-
2、6,x=-11.,4.如果AC0,且BC0,那么直线Ax+By+C=0不通过()(A)第一象限(B)第二象限(C)第三象限(D)第四象限【解析】选C.由已知得直线Ax+By+C=0在x轴上的截距在y轴上的截距 故直线经过第一、二、四象限,不经过第三象限.,5.过点(2,1)且在x轴上的截距是在y轴截距2倍的直线方程为_.【解析】若直线过原点,满足条件,方程为若直线不过原点,设直线方程为又过(2,1)点,解得b=2.答案:或x+2y-4=0,两点间距离公式与中点坐标公式【例1】(1)已知数轴上A、B两点的坐标分别为x1=a+b,x2=a-b.求AB、BA、d(A,B)、d(B,A).(2)已知函
3、数求f(x)的最小值,并求取得最小值时x的值.【审题指导】(1)明确AB为数轴上 的数量(或坐标),明确d(A,B)为A、B两点间的距离.(2)将两被开方式配方,可发现f(x)表示平面直角坐标系中动点P(x,0)到两定点的距离之和,最后利用数形结合的思想求解.,1,【自主解答】(1)AB=x2-x1=(a-b)-(a+b)=-2b;BA=x1-x2=(a+b)-(a-b)=2b;d(A,B)=|x2-x1|=2|b|;d(B,A)=|x1-x2|=2|b|.(2)上式表示点P(x,0)与点A(2,2)的距离加上点P(x,0)与点B(1,1)的距离,即求x轴上一点P(x,0)到点A(2,2)、B
4、(1,1)的距离之和的最小值.,由图利用对称可知,函数f(x)的最小值为两点B(1,-1)和A(2,2)间的距离.再由两点式直线方程得BA的方程为3x-y-4=0,令y=0得故 时,f(x)取得最小值,【规律方法】1.数轴的公式(1)数轴上的两点A(x1),B(x2),则向量 的坐标AB=x2-x1,A、B两点间的距离为d(A,B)=AB=x2-x1.(2)数轴上的三点A、B、C,都有 和AC=AB+BC成立.,提醒:要注意、AB与AB的不同.表示起点为A,终点为B的向量,它既有大小又有方向;AB表示向量 的坐标(或数量),它是一个实数,其前面的正号或负号表示向量的方向与轴同向或反向;AB表示
5、向量 的大小,即线段AB的长度.,2.两点间的距离公式平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)的距离表示为(1)当P1P2平行于x轴时,d(P1,P2)=|x2-x1|;(2)当P1P2平行于y轴时,d(P1,P2)=|y2-y1|;(3)当P2点是原点时,d(P1,P2)=,【互动探究】若本例(2)中求f(x)的最大值,并求取得最大值时x的值.【解析】上式表示P(x,0)到A(2,2)与到B(1,1)的距离之差,AB的方程为x-y=0,令y=0得x=0.当x=0时,f(x)max=.,【变式训练】已知平行四边形的三个顶点是A(3,-2)、B(5,2)、C(-1,4),求它
6、的第四个顶点D的坐标.【解题提示】利用平行四边形的对角线互相平分,由中点坐标公式即得.,【解析】如图,若ABCD1成平行四边形,对角线AC、BD1互相平分,AC、BD1的中点重合.设D1(x1,y1),由中点坐标公式有解得,点D1的坐标为(-3,0).若ABD2C成平行四边形,则同理可求得点D2的坐标为(1,8).若AD3BC成平行四边形,则同理可求得点D3的坐标为(9,-4).综上所述,点D的坐标为(-3,0)或(1,8)或(9,-4).,直线的倾斜角与斜率【例2】(1)若直线l与直线y=1,x=7分别交于点P,Q,且线段PQ的中点坐标为(1,-1),则直线l的斜率为()(2)直线 的倾斜角
7、的范围是(),2,【审题指导】(1)关键抓住PQ的中点,求出P、Q的坐标(2)关键抓住直线方程,求出斜率取值范围,从而结合正切函数图象得到倾斜角的取值范围.【自主解答】(1)选B.依题意,设点P(a,1),Q(7,b),则有 解得a=-5,b=-3,从而可知直线l的斜率为(2)选B.由 得直线斜率-1cos1,设直线的倾斜角为,则结合正切函数在 上的图象可知,,【规律方法】1.若已知直线的倾斜角或的某种三角函数,一般根据k=tan求斜率.2.若已知直线上两点(x1,y1),(x2,y2)(x1x2),一般根据斜率公式 求斜率.,3.已知倾斜角的范围,求斜率的范围,实质上是求k=tan的值域问题
8、;已知斜率k的范围求倾斜角的范围,实质上是在 上解关于正切函数的三角不等式问题.由于函数k=tan在 上不单调,故一般借助该函数图象来解决此类问题.,【互动探究】若将本例(2)中直线变为:(mR且m0),则该直线倾斜角的范围如何?【解析】选A.由 得斜率得:或 设直线的倾斜角为,则 或 结合正切函数在 上的图象可知:或,【变式训练】(2011长沙模拟)已知线段PQ两端点的坐标分别为P(-1,1)和Q(2,2),若直线l:x+my+m=0与线段PQ有交点,求实数m的取值范围.【解析】如图所示,直线l:x+my+m=0过定点A(0,-1),当m0时,解得 或 当m=0时,直线l方程为x=0,与线段
9、PQ有交点,所以,实数m的取值范围为,直线的方程【例3】(2011厦门模拟)直线l经过点P(3,2)且与x,y轴的正半轴分别交于A、B两点,OAB的面积为12,求直线l的方程.【审题指导】抓住题目中AOB的面积与截距有关,从而选直线方程的截距式求解,若关注直线l过定点P(3,2),可选用直线的点斜式方程求解.,3,【自主解答】方法一:设直线l的方程为(a0,b0),A(a,0),B(0,b),解得所求直线l的方程为 即2x+3y-12=0.方法二:设直线l的方程为y-2=k(x-3),令y=0,得直线l在x轴的正半轴上截距令x=0,得直线l在y轴的正半轴上的截距b=2-3k,解得所求直线l的方
10、程为即2x+3y-12=0.,【规律方法】求直线方程的常用方法有:1.直接法:根据已知条件,选择恰当形式的直线方程,直接求出方程中系数,写出直线方程.2.待定系数法:先根据已知条件设出直线方程.再根据已知条件构造关于待定系数的方程(组)求系数,最后代入求出直线方程.提醒:求直线方程时,若不能断定直线是否具有斜率时,应对斜率存在与不存在加以讨论.在用截距式时,应先判断截距是否为0,若不确定,则需分类讨论.,【变式训练】求适合下列条件的直线方程:(1)经过点P(3,2),且在两坐标轴上的截距相等的直线l;(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍.【解析】(1)设直线l在x
11、,y轴上的截距均为a,若a=0,即l过点(0,0)和(3,2),l的方程为 即2x-3y=0.若a0,则设l的方程为l过点(3,2),a=5,l的方程为x+y-5=0.综上可知,直线l的方程为2x-3y=0或x+y-5=0.,(2)由已知:设直线y=3x的倾斜角为,则所求直线的倾斜角为2,tan=3,又直线经过点A(-1,-3),因此所求直线方程为即3x+4y+15=0.,【例】直线l过点P(1,4),分别交x轴的正方向和y轴的正方向于A、B两点.(1)当|OA|+|OB|最小时,O为坐标原点,求l的方程;(2)当|PA|PB|最小时,求l的方程.【审题指导】抓住直线l过点P(1,4),设出直
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基本 公式 直线 斜率 方程

链接地址:https://www.31ppt.com/p-6263421.html