基因重组和基因工程.pps
《基因重组和基因工程.pps》由会员分享,可在线阅读,更多相关《基因重组和基因工程.pps(118页珍藏版)》请在三一办公上搜索。
1、基因重组和基因工程 Genetic Recombination and Genetic Engineering,第14章,DNA克隆、测序与重组技术的历史,1973年,Stanley Cohen等人首次获得体外重组DNA的分子克隆1977年,Allan Maxam和Walter Gilbert的化学裂解DNA测序问世不久,Sanger 等的双脱氧测序法20世纪90年代启动人类基因组计划(human genome project,HGP)重组DNA技术学(Recombinant DNA Technology),第一节自然界DNA重组和基因转移是经常发生的 DNA Recombination an
2、d Gene Transfer Occur Frequently in Nature,DNA重组,发生在同源序列间的重组称为同源重组(homologous recombination),又称基本重组(general recombination)。是最基本的DNA重组方式,通过链的断裂和再连接,在两个DNA分子同源序列间进行单链或双链片段的交换。,以E.coli的同源重组为例,了解同源重组机制的Holliday模型。,一、同源重组是最基本的DNA重组方式,Holliday模型的4个关键步骤:,两个同源染色体DNA排列整齐;,一个DNA的一条链断裂、并与另一个DNA对应的链连接,形成Hollida
3、y中间体;,通过分支移动产生异源双链DNA;,Holliday中间体切开并修复,形成两个双链重组体DNA,分别为:,片段重组体(见模型图左边产物):切开的链与原来断裂的是同一条链,重组 体含有一段异源双链区,其两侧来自同一亲本DNA。,拼接重组体(见模型图右边产物):切开的链并非原来断裂的链,重组体异源双链区的两侧来自不同亲本DNA。,Holiday中间体,5,片段重组体,拼接重组体,二、细菌的基因转移与重组有四种方式,(一)接合作用,当细胞与细胞、或细菌通过菌毛相互接触时,质粒DNA从一个细胞(细菌)转移至另一细胞(细菌)的DNA转移称为接合作用(conjugation)。,可接合质粒如 F
4、 因子(F factor),细菌染色体外的小型环状双链DNA分子。,质粒,(二)转化作用,通过自动获取或人为地供给外源DNA,使细胞或培养的受体细胞获得新的遗传表型,称为转化作用(transformation)。,例:溶菌时,裂解的DNA片段被另一细菌摄取。,(三)转导作用,当病毒从被感染的(供体)细胞释放出来、再次感染另一(供体)细胞时,发生在供体细胞与受体细胞之间的DNA转移及基因重组即为转导作用(transduction)。,噬菌体的生活史,溶菌生长途径(lysis pathway)溶源菌生长途径(lysogenic pathway),三、位点特异重组,即特异位点间发生的整合,位点特异重
5、组(site-specific recombination)是由整合酶催化,在两个DNA序列的特异位点间发生的整合。,噬菌体的整合酶识别噬菌体和宿主染色体的特异靶位点发生选择性整合;反转录病毒整合酶可特异地识别、整合反转录病毒cDNA的长末端重复序列(long terminal repeat,LTR)。,(一)噬菌体DNA的整合,(二)细菌的特异位点重组,沙门菌H片段倒位决定鞭毛相转变。,hix为反向重复序列,它们之间的H片段可在Hin控制下进行特异位点重组(倒位)。H片段上有两个启动子P,其一驱动hin基因表达,另一正向时驱动H2和rH1基因表达,反向(倒位)时H2和rH1不表达。rH1为H
6、1的阻遏蛋白基因。,沙门菌H片段倒位决定鞭毛相转变,(三)免疫球蛋白基因的重排,免疫球蛋白(Ig),由两条轻链(L链)和两条重链(H链)组成,分别由三个独立的基因族编码,其中两个编码轻链(和),一个编码重链。,轻链的基因片段:,重链的基因片段:,重链(IgH)基因的V-D-J重排和轻链(IgL)基因的V-J重排均发生在特异位点上。在V片段的下游,J片段的上游以及D片段的两侧均存在保守的重组信号序列(recombination signal sequence,RSS)。此重排的重组酶基因rag(recombination activating gene)共有两个,分别产生蛋白质RAG1和RAG2
7、。,V,J,分子内转酯反应,单链切开转移核苷酸修复、连接,免疫球蛋白基因重排过程,四、转座重组,由插入序列和转座子介导的基因移位或重排称为转座(transposition)。,大多数基因在基因组内的位置是固定的,但有些基因可以从一个位置移动到另一位置。这些可移动的DNA序列包括插入序列和转座子。,插入序列(insertion sequences,IS)组成:,(一)插入序列转座,二个分离的反向重复(inverted repeats,IR)序列,特有的正向重复序列,一个转座酶(transposase)编码基因,插入序列发生转座的形式:,保守性转座(conservative transpositi
8、on),复制性转座(duplicative transposition),插入序列的复制性转座,转座子(transposons)可从一个染色体位点转移到另一位点的分散重复序列。,(二)转座子转座,转座子组成:,反向重复序列转座酶编码基因抗生素抗性等有用的基因,细菌的可流动性元件A插入序列:转座酶编码基因两侧连接反向末端重复序列(箭头所示)B转座子Tn3:含有转座酶、-内酰胺酶及阻遏蛋白编码基因C转座子Tn10:含四环素抗性基因及两个相同的插入序列IS10L,由转座子介导的转座,第二节 重组DNA技术又称DNA克隆或分子克隆,DNA Recombination Technique is also
9、 Called DNA Cloning or Molecular Clone,重组DNA技术的发展史,1865年 G.J.Mendel的豌豆杂交试验。1944年 O.T.Avery的肺炎球菌转化实验。1973年 美国斯坦福大学的科学家构建第一个重组DNA分子。1977年 美国南旧金山由博耶和斯旺森建立世界上第一家遗传工程公司,专门应用重组DNA技术制造医学上重要的药物。1980年 开始建造第一家应用重组DNA技术生产胰岛素的工厂。1997年 英国罗林研究所成功的克隆了多莉。,相关概念 DNA克隆 工具酶 目的基因 基因载体基本原理 重组DNA技术与医学的关系,本节主要内容:,一、重组DNA技术
10、相关概念,克隆(clone):来自同一始祖的相同副本或拷贝的集合。,获取同一拷贝的过程称为克隆化(cloning),即无性繁殖。,(一)DNA克隆,技术水平:分子克隆(molecular clone)(即DNA 克隆)细胞克隆 个体克隆(动物或植物),应用酶学的方法,在体外将各种来源的遗传物质(同源的或异源的、原核的或真核的、天然的或人工的DNA)与载体DNA接合成一具有自我复制能力的DNA分子复制子(replicon),继而通过转化或转染宿主细胞,筛选出含有目的基因的转化子细胞,再进行扩增提取获得大量同一DNA分子,也称基因克隆或重组DNA(recombinant DNA)。,DNA克隆,生
11、物技术工程:基因工程、蛋白质工程、酶工程、细胞工程等,目的:分离获得某一感兴趣的基因或DNA 获得感兴趣基因的表达产物(蛋白质),基因工程(genetic engineering)实现基因克隆所用的方法及相关的工作称基因工程,又称重组DNA工艺学。,基因工程的操作过程,切,接,转,增,筛,(二)工具酶,限制性核酸内切酶 DNA聚合酶 逆转录酶 T4DNA连接酶 碱性磷酸酶 末端转移酶 Taq DNA聚合酶,重组DNA技术中常用的工具酶,限制性核酸内切酶(restriction endonuclease),限制性核酸内切酶(restriction endonuclease,RE)是识别DNA的特
12、异序列,并在识别位点或其周围切割双链DNA的一类内切酶。,+,Bam H,定义:,与甲基化酶共同构成细菌的限制修饰系统,限制外源DNA,保护自身DNA。,、(基因工程技术中常用型),分类:,作用:,限制性核酸内切酶,限制性核酸内切酶的类型,主要特性 I 型 II 型 III 型,DNA底物,双链DNA,双链DNA,甲基化作用,有,无,有,辅助因子,ATP Mg2+SAM,ATP Mg2+,Mg2+,识别序列,特异,特异,特异,切割位点,距识别序列1kb处,识别序列内或附近,距识别序列下游,随机性切割,特异性切割,24-26bp处,双链DNA,第一个字母取自产生该酶的细菌属名,用大写;第二、第三
13、个字母是该细菌的种名,用小写;第四个字母代表株;用罗马数字表示发现的先后次序。,命名:,Hin d,Haemophilus influenzae d株流感嗜血杆菌d株的第三种酶,类酶识别序列特点 回文结构(palindrome),切口:平端切口、粘端切口,Bam H,+,Hind,+,平端切口,粘端切口,来源不同的限制酶,但能识别和切割同一位点,这些酶称同功异源酶。,+,Bam H,+,Bst,同功异源酶:,有些限制性内切酶虽然识别序列不完全相同,但切割DNA后,产生相同的粘性末端,称为同尾酶。这两个相同的粘性末端称为配伍未端(compatible end)。,Bam H,Bg l,+,+,同
14、尾酶,II 型内切酶切割双链DNA产生3种不同的切口,1、在识别顺序的双侧末端切割DNA双链,于对称轴的5,端切割,产生5,端突出的粘性末端2、在识别顺序的双侧末端切割DNA双链,于对称轴的3,端切割,产生3,端突出的粘性末端3、在识别顺序的对称轴上,对双链DNA同时切割,产生平末端,EcoRI等产生的5粘性末端,5 G-C-T-G-A-A-T-T-C-G-A-G 3,3 C-G-A-C-T-T-A-A-G-C-T-C 5,EcoRI 37,5 G-C-T-G-OH P-A-A-T-T-C-G-A-G 3,3 C-G-A-C-T-T-A-A-P OH-G-C-T-C 5,退火 4-7,5 G-
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基因 重组 基因工程
链接地址:https://www.31ppt.com/p-6263125.html