图象处理中的正交变换.ppt
《图象处理中的正交变换.ppt》由会员分享,可在线阅读,更多相关《图象处理中的正交变换.ppt(110页珍藏版)》请在三一办公上搜索。
1、第四章 图象处理中的正交变换,空域处理法频域(变换域)处理法在频域处理中最为关键的预处理就是变换处理。这种变换一般是线性变换,其基本线性运算式是严格可逆的,并且满足一定的正交条件。在图象处理中正交变换被广泛应用于图象特征提取、图象增强、图象复原、图象识别、图象编码等处理中。,本章的几个重要问题,空间域图像变换到频域的具体实现(图像离散傅立叶变换与反变换公式)频域图像的表达特点与理解(经中心变换后,低频在内,高频在外)对频域低通滤波的理解对频域高通滤波的理解,频域变换:理论基础,理论基础线性系统卷积与相关,线性系统,线性系统系统的定义:接受一个输入,并产生相应输出的任何实体。系统的输入是一个或两
2、个变量的函数,输出是相同变量的另一个函数。,x(t)输入,系统,y(t)输出,线性系统线性系统的定义:对于某特定系统,有:x1(t)y1(t)x2(t)y2(t)该系统是线性的当且仅当:x1(t)+x2(t)y1(t)+y2(t)从而有:a*x1(t)a*y1(t),线性系统线性系统平移不变性的定义:对于某线性系统,有:x(t)y(t)当输入信号沿时间轴平移T,有:x(t-T)y(t-T)则称该线性系统具有平移不变性,卷 积,卷积卷积的定义离散一维卷积二维卷积的定义离散二维卷积,卷积的定义对于一个线性系统的输入f(t)和输出h(t),如果有一个一般表达式,来说明他们的关系,对线性系统的分析,将
3、大有帮助卷积积分就是这样的一般表达式 h(t)=g(t-)f()d 记为:h=g*f-g(t)称为冲激响应函数,离散一维卷积 h(i)=f(i)*g(i)=f(j)g(i-j)j,二维卷积的定义 h(x,y)=f*g=f(u,v)g(x u,y v)dudv-离散二维卷积h(x,y)=f*g=f(m,n)g(x m,y n)m n,傅立叶变换,周期函数可以表示为不同频率的正弦和/或余弦和的形式非周期函数可以用正弦和/或余弦乘以加权函数的积分来表示这种情况下的公式就是傅立叶变换,傅立叶变换,一维连续傅立叶变换:几个概念 假设函数f(x)为实函数。但一个实函数的傅立叶变换可能为复函数:F(u)=R
4、(u)+jI(u)(1)傅立叶变换的幅度或频率谱:|F(u)|=R2(u)+I2(u)1/2(2)傅立叶变换的功率谱/能量谱:P(u)=|F(u)|2=R2(u)+I2(u),傅立叶变换,傅立叶变换,一维连续傅立叶变换:几个概念(3)傅立叶变换的相位谱:(u)=tan-1(I(u)/R(u)(4)傅立叶变换中的变量u通常称为频率变量 这个名称源于欧拉公式中的指数项 exp-j2ux=cos2ux-jsin2ux(exp j a=cosa-jsina)如果把傅立叶变换的积分解释为离散项的和,则易推出F(u)是一组sin和cos函数项的无限和,其中u的每个值决定了其相应cos,sin函数对的频率。
5、,先以一维为例:,傅立叶变换,二维傅立叶变换的性质,2.平移性,移中性,直接变换:,原图像f(x,y),移中的变换:,傅立叶变换,二维傅立叶变换的性质,2.平移性,幅度谱(频率谱)中每一点(u,v)的幅度|F(u,v)|可用来表示该频率的正弦(余弦)平面波在叠加中所占的比例。,均值性均值性的描述:离散函数的均值等于该函数傅立叶变换在(0,0)点的值 M-1N-1 F(0,0)=1/MNf(x,y)e0 x=0 y=0,周期与共轭对称周期性的描述:离散傅立叶变换DFT和它的逆变换是以N为周期的对于一维傅立叶变换有:F(u)=F(u+N)对于二维傅立叶变换有:F(u,v)=F(u+M,v+N),周
6、期与共轭对称共轭对称性的描述:傅立叶变换结果是以原点为中心的共轭对称函数对于一维傅立叶变换有:F(u)=F*(-u)对于二维傅立叶变换有:F(u,v)=F*(-u,-v)*表示对于复数的标准共轭操作,快速傅立叶变换(FFT)及编程实现离散余弦变换沃尔什变换哈尔函数及哈尔变换斜矩阵与斜变换小波变换快速算法(Mallat算法),频域增强,频域增强的理论基础卷积理论被处理图象f(x,y)变换函数h(x,y)/*线性、位置无关操作目标图象g(x,y)有卷积:g(x,y)=h(x,y)*f(x,y)有等式:G(u,v)=H(u,v)F(u,v)有等式:g(x,y)=F-1H(u,v)F(u,v),频域增
7、强的原理频率平面与图象空域特性的关系图象变化平缓的部分靠近频率平面的圆心,这个区域为低频区域图象中的边、噪音、变化陡峻的部分,以放射方向离开频率平面的圆心,这个区域为高频区域,频域增强的原理,变化平缓部分,边、噪音、变化陡峭部分,u,v,频域增强的处理方法 对于给定的图象f(x,y)和目标,用(-1)x+y*f(x,y)进行中心变换计算出它的傅立叶变换F(u,v)选择一个变换函数H(u,v),计算H(u,v)F(u,v)(注意:并非到空域找)计算出它的反傅立叶变换用(-1)x+y乘以上面结果的实部,得目标图像H(u,v)被称为滤波器,陷波滤波器(带阻),离散函数的均值等于该函数傅立叶变换在(0
8、,0)点的值 M-1N-1 F(0,0)=1/MNf(x,y)e0 x=0 y=0H(u,v)=0,(u,v)=(M/2,N/2)1,else,SEM即扫描电子显微镜图片,频域增强与空域模板增强的关系卷积的离散表达式,基本上可以理解为模板运算的数学表达方式 M-1 N-1g(x,y)=f*h=f(m,n)h(x m,y n)m=0 n=0因此,卷积的冲击响应h(x,y),被称为空域卷积模板,这种称谓仅在模板相对中心原点是对称的时,才是成立的,频域增强与空域增强的关系在实践中,小的空间模板比傅立叶变换用得多得多,因为它们易于实现,操作快捷。对于很多在空域上难以表述清楚的问题,对频域概念的理解就显
9、得十分重要(如压缩),图像增强:频域过滤,频域过滤器低通过滤高通过滤同形过滤器,图像增强:频域过滤,图像增强:频域过滤,图像增强:频域过滤,低通过滤频域低通过滤的基本思想理想低通过滤器Butterworth低通过滤器高斯低通过滤器,图像增强:频域过滤,频域低通过滤的基本思想G(u,v)=F(u,v)H(u,v)F(u,v)是需要钝化图像的傅立叶变换形式H(u,v)是选取的一个过滤器变换函数G(u,v)是通过H(u,v)减少F(u,v)的高频部分来得到的结果运用傅立叶逆变换得到钝化后的图像。,图像增强:频域过滤,理想低通过滤器理想低通过滤器的定义理想低通过滤器截止频率的设计理想低通过滤器的分析,
10、图像增强:频域过滤,理想低通过滤器的定义一个二维的理想低通过滤器(ILPF)的转换函数满足(是一个分段函数)其中:D0 为截止频率 D(u,v)为距离函数 D(u,v)=(u2+v2)1/2,图像增强:频域过滤,理想低通过滤器的透视图图像显示、截面图,H(u,v)作为距离函数D(u,v)的函数的截面图,图像增强:频域过滤,理想低通过滤器的截止频率的设计先求出总的信号能量PT:其中:p(u,v)=|F(u,v)|2=R2(u,v)+I2(u,v)是能量模,图像增强:频域过滤,理想低通过滤器的截止频率的设计如果将变换作中心平移,则一个以频域中心为原点,r为半径的圆就包含了百分之的能量,图像增强:频
11、域过滤,理想低通过滤器的截止频率的设计,图像增强:频域过滤,理想低通过滤器的截止频率的设计求出相应的D0r=D0=(u2+v2)1/2上面例子:D0=5,15,30,80,230=92,94.6,96.4,98,99.5,图像增强:频域过滤,理想低通过滤器的分析整个能量的90%被一个直径为8的小圆周包含,大部分尖锐的细节信息都存在于被去掉的10%的能量中小的边界和其它尖锐细节信息被包含在频谱的至多0.5%的能量中被钝化的图像被一种非常严重的振铃效果理想低通滤波器的一种特性所影响,图像增强:频域过滤,图像增强:频域过滤,理想低通过滤器的分析振铃效果理想低通滤波器的一种特性,图像增强:频域过滤,B
12、utterworth低通过滤器Butterworth低通过滤器的定义Butterworth低通过滤器截止频率的设计Butterworth低通过滤器的分析,图像增强:频域过滤,Butterworth低通过滤器的定义一个截止频率在与原点距离为D0的n阶Butterworth低通过滤器(BLPF)的变换函数如下:,图像增强:频域过滤,Butterworth低通过滤器的截面图等,H(u,v)作为D(u,v)/D0的函数的截面图,图像增强:频域过滤,Butterworth过滤器截止频率的设计变换函数中不存在一个不连续点作为一个通过的和被过滤掉的截止频率的明显划分通常把H(u,v)开始小于其最大值的一定比
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 图象处理 中的 正交 变换

链接地址:https://www.31ppt.com/p-6258089.html