递归、分治、动态规划、回溯.ppt
《递归、分治、动态规划、回溯.ppt》由会员分享,可在线阅读,更多相关《递归、分治、动态规划、回溯.ppt(73页珍藏版)》请在三一办公上搜索。
1、递归、分治、动态规划与回溯,回溯、递归、递推是计算机算法中基础内容,范围极其广泛。,递归与分治基本原理,对这k个子问题分别求解。如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止。,递归与分治基本原理,递归与分治基本原理,递归的概念,直接或间接地调用自身的算法称为递归算法。用函数自身给出定义的函数称为递归函数。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像
2、一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。,递推与递归,递归与递推表面看来是相逆的过程,其实也是相似的,最终的计算都是从小算到大。递推的使用环境要求高导致了递推的高效性,递推没有重复计算什么数据,保持了高效。递归大多数会重复计算子问题,导致时间浪费,所以一般不要使用过深的递归,甚至会空间溢出。,但是也不能说递推好,递归差,因为递归却能解决很多递推做不到的事情,在某些特定的环境下也能实现高效,并且递归容易使用。我们要就事论事!,斐波那契数列(Fibonacci),对于f(30),如果使用递归则需要运行1664079次,而递推只需30次就可以了,速度悬殊。,递归:long
3、f(long n)if i3 then return 1;else f(i-1)+f(i-2);,递推:long f(long n)a 1:=1;a 2:=1;for i:=1 to n-2 dof i+2:=f i+f i+1;,递推与递归,1.经典递归例如Hanoi塔问题:经典的递归,原问题包含子问题。有些问题或者数据结构本来就是递归描述的,用递归做很自然。2.递归与递推,数学式关系利用递归的思想建立递推关系,如由兔子生崽而来的fibonacci数列。但递推由于没有返回段,因此更为简单,有时可以直接用循环实现。3.分治等以大化小算法不少分治方法是源于递归思想,或是递归分解+合并处理。,递归
4、的应用范围,递归的应用范围,4.回溯 规模较小的问题用回溯解决比较自然。注意递归前后要保证现场的保存和恢复,即正确的转化问题。5.动态规划 动态规划的子问题重叠性质与递归有某种相似之处。递归+动态修改查表是一种不错的建立动态规划模型的方法。树、图、排序等符合递归子问题思想的结构 树、图等数据结构本身就是递归结构,因此当然是使用递归来处理。7.其他 例如排列组合等,很杂的。,递归举例,例1 阶乘函数阶乘函数可递归地定义为:,边界条件,递归方程,边界条件与递归方程是递归函数的二个要素,递归函数只有具备了这两个要素,才能在有限次计算后得出结果。,例2 Fibonacci数列无穷数列1,1,2,3,5
5、,8,13,21,34,55,被称为Fibonacci数列。它可以递归地定义为:,边界条件,递归方程,第n个Fibonacci数可递归地计算如下:public static int fibonacci(int n)if(n=1)return 1;return fibonacci(n-1)+fibonacci(n-2);,递归举例,例3 Ackerman函数当一个函数及它的一个变量是由函数自身定义时,称这个函数是双递归函数。Ackerman函数A(n,m)定义如下:,递归举例,例3 Ackerman函数前2例中的函数都可以找到相应的非递归方式定义:,但本例中的Ackerman函数却无法找到非递归
6、的定义。,递归举例,例3 Ackerman函数A(n,m)的自变量m的每一个值都定义了一个单变量函数:M=0时,A(n,0)=n+2M=1时,A(n,1)=A(A(n-1,1),0)=A(n-1,1)+2,和A(1,1)=2故A(n,1)=2*nM=2时,A(n,2)=A(A(n-1,2),1)=2A(n-1,2),和A(1,2)=A(A(0,2),1)=A(1,1)=2,故A(n,2)=2n。M=3时,类似的可以推出M=4时,A(n,4)的增长速度非常快,以至于没有适当的数学式子来表示这一函数。,递归举例,例4 排列问题设计一个递归算法生成n个元素r1,r2,rn的全排列。,设R=r1,r2
7、,rn是要进行排列的n个元素,Ri=R-ri。集合X中元素的全排列记为perm(X)。(ri)perm(X)表示在全排列perm(X)的每一个排列前加上前缀得到的排列。R的全排列可归纳定义如下:,当n=1时,perm(R)=(r),其中r是集合R中唯一的元素;当n1时,perm(R)由(r1)perm(R1),(r2)perm(R2),(rn)perm(Rn)构成。,例5 整数划分问题将正整数n表示成一系列正整数之和:n=n1+n2+nk,其中n1n2nk1,k1。正整数n的这种表示称为正整数n的划分。求正整数n的不同划分个数。例如正整数6有如下11种不同的划分:6;5+1;4+2,4+1+1
8、;3+3,3+2+1,3+1+1+1;2+2+2,2+2+1+1,2+1+1+1+1;1+1+1+1+1+1。,递归举例,(2)q(n,m)=q(n,n),mn;最大加数n1实际上不能大于n。因此,q(1,m)=1。,(1)q(n,1)=1,n1;当最大加数n1不大于1时,任何正整数n只有一种划分形式,即,(4)q(n,m)=q(n,m-1)+q(n-m,m),nm1;正整数n的最大加数n1不大于m的划分由n1=m的划分和n1n-1 的划分组成。,(3)q(n,n)=1+q(n,n-1);正整数n的划分由n1=n的划分和n1n-1的划分组成。,例5 整数划分问题前面的几个例子中,问题本身都具有
9、比较明显的递归关系,因而容易用递归函数直接求解。在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。,递归举例,例5 整数划分问题前面的几个例子中,问题本身都具有比较明显的递归关系,因而容易用递归函数直接求解。在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。,正整数n的划分数p(n)=q(n,n)。,递归举例,例6 Hanoi塔问题设a,b,c是3个
10、塔座。开始时,在塔座a上有一叠共n个圆盘,这些圆盘自下而上,由大到小地叠在一起。各圆盘从小到大编号为1,2,n,现要求将塔座a上的这一叠圆盘移到塔座b上,并仍按同样顺序叠置。在移动圆盘时应遵守以下移动规则:规则1:每次只能移动1个圆盘;规则2:任何时刻都不允许将较大的圆盘压在较小的圆盘之上;规则3:在满足移动规则1和2的前提下,可将圆盘移至a,b,c中任一塔座上。,递归举例,在问题规模较大时,较难找到一般的方法,因此我们尝试用递归技术来解决这个问题。,当n=1时,问题比较简单。此时,只要将编号为1的圆盘从塔座a直接移至塔座b上即可。当n1时,需要利用塔座c作为辅助塔座。此时若能设法将n-1个较
11、小的圆盘依照移动规则从塔座a移至塔座c,然后,将剩下的最大圆盘从塔座a移至塔座b,最后,再设法将n-1个较小的圆盘依照移动规则从塔座c移至塔座b。由此可见,n个圆盘的移动问题可分为2次n-1个圆盘的移动问题,这又可以递归地用上述方法来做。由此可以设计出解Hanoi塔问题的递归算法如下。,例6 Hanoi塔问题,public static void hanoi(int n,int a,int b,int c)if(n 0)hanoi(n-1,a,c,b);move(a,b);hanoi(n-1,c,b,a);,思考题:如果塔的个数变为a,b,c,d四个,现要将n个圆盘从a全部移动到d,移动规则不
12、变,求移动步数最小的方案。,递归举例,递归小结,优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。缺点:递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储空间都比非递归算法要多。,分治法的基本步骤,divide-and-conquer(P)if(|P|=n0)adhoc(P);/解决小规模的问题 divide P into smaller subinstances P1,P2,.,Pk;/分解问题 for(i=1,i=k,i+)yi=divide-and-conquer(Pi);/递归的解各子问题 return merge(y1,
13、.,yk);/将各子问题的解合并为原问题的解 人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。即将一个问题分成大小相等的k个子问题的处理方法是行之有效的。这种使子问题规模大致相等的做法是出自一种平衡(balancing)子问题的思想,它几乎总是比子问题规模不等的做法要好。,分治法的复杂性分析,一个分治法将规模为n的问题分成k个规模为nm的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时
14、间,则有:,通过迭代法求得方程的解:,注意:递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当minmi+1时,T(mi)T(n)T(mi+1)。,二分搜索技术,分析:如果n=1即只有一个元素,则只要比较这个元素和x就可以确定x是否在表中。因此这个问题满足分治法的第一个适用条件,分析:比较x和a的中间元素amid,若x=amid,则x在L中的位置就是mid;如果xai,同理我们只要在amid的后面查找x即可。无论是在前面还是后面查找x,其方法都和在a中查找x一样,只不
15、过是查找的规模缩小了。这就说明了此问题满足分治法的第二个和第三个适用条件。,分析:很显然此问题分解出的子问题相互独立,即在ai的前面或后面查找x是独立的子问题,因此满足分治法的第四个适用条件。,给定已按升序排好序的n个元素a0:n-1,现要在这n个元素中找出一特定元素x。分析:,该问题的规模缩小到一定的程度就可以容易地解决;该问题可以分解为若干个规模较小的相同问题;分解出的子问题的解可以合并为原问题的解;分解出的各个子问题是相互独立的。,二分搜索技术,给定已按升序排好序的n个元素a0:n-1,现要在这n个元素中找出一特定元素x。,据此容易设计出二分搜索算法:public static int
16、binarySearch(int a,int x,int n)/在 a0 amiddle)left=middle+1;else right=middle-1;return-1;/未找到x,算法复杂度分析:每执行一次算法的while循环,待搜索数组的大小减少一半。因此,在最坏情况下,while循环被执行了O(logn)次。循环体内运算需要O(1)时间,因此整个算法在最坏情况下的计算时间复杂性为O(logn)。,思考题:给定a,用二分法设计出求an的算法。,大整数的乘法,请设计一个有效的算法,可以进行两个n位大整数的乘法运算,小学的方法:O(n2)效率太低分治法:,a,b,c,d,复杂度分析T(n
17、)=O(n2)没有改进,X=Y=X=a 2n/2+b Y=c 2n/2+d XY=ac 2n+(ad+bc)2n/2+bd,大整数的乘法,请设计一个有效的算法,可以进行两个n位大整数的乘法运算,小学的方法:O(n2)效率太低分治法:,XY=ac 2n+(ad+bc)2n/2+bd 为了降低时间复杂度,必须减少乘法的次数。XY=ac 2n+(a-c)(b-d)+ac+bd)2n/2+bdXY=ac 2n+(a+c)(b+d)-ac-bd)2n/2+bd,复杂度分析T(n)=O(nlog3)=O(n1.59)较大的改进,细节问题:两个XY的复杂度都是O(nlog3),但考虑到a+c,b+d可能得到
18、m+1位的结果,使问题的规模变大,故不选择第2种方案。,大整数的乘法,请设计一个有效的算法,可以进行两个n位大整数的乘法运算,小学的方法:O(n2)效率太低分治法:O(n1.59)较大的改进更快的方法?,如果将大整数分成更多段,用更复杂的方式把它们组合起来,将有可能得到更优的算法。最终的,这个思想导致了快速傅利叶变换(Fast Fourier Transform)的产生。该方法也可以看作是一个复杂的分治算法,对于大整数乘法,它能在O(nlogn)时间内解决。是否能找到线性时间的算法?目前为止还没有结果。,Strassen矩阵乘法,A和B的乘积矩阵C中的元素Ci,j定义为:,若依此定义来计算A和
19、B的乘积矩阵C,则每计算C的一个元素Cij,需要做n次乘法和n-1次加法。因此,算出矩阵C的 个元素所需的计算时间为O(n3),传统方法:O(n3),Strassen矩阵乘法,使用与上例类似的技术,将矩阵A,B和C中每一矩阵都分块成4个大小相等的子矩阵。由此可将方程C=AB重写为:,传统方法:O(n3)分治法:,由此可得:,复杂度分析T(n)=O(n3)没有改进,Strassen矩阵乘法,传统方法:O(n3)分治法:,为了降低时间复杂度,必须减少乘法的次数。,复杂度分析T(n)=O(nlog7)=O(n2.81)较大的改进,Strassen矩阵乘法,传统方法:O(n3)分治法:O(n2.81)
20、更快的方法?,Hopcroft和Kerr已经证明(1971),计算2个矩阵的乘积,7次乘法是必要的。因此,要想进一步改进矩阵乘法的时间复杂性,就不能再基于计算22矩阵的7次乘法这样的方法了。或许应当研究或矩阵的更好算法。在Strassen之后又有许多算法改进了矩阵乘法的计算时间复杂性。目前最好的计算时间上界是 O(n2.376)是否能找到O(n2)的算法?目前为止还没有结果。,快速排序,private static int partition(int p,int r)int i=p,j=r+1;Comparable x=ap;/将=x的元素交换到左边区域/将 0);if(i=j)break;M
21、yMath.swap(a,i,j);ap=aj;aj=x;return j;,初始序列,j-;,5,7,5,2,6,8,i+;,5,6,5,2,7,8,j-;,5,2,5,6,7,8,i+;,完成,5,2,5 6 7,8,private static int randomizedPartition(int p,int r)int i=random(p,r);MyMath.swap(a,i,p);return partition(p,r);,快速排序,快速排序算法的性能取决于划分的对称性。通过修改算法partition,可以设计出采用随机选择策略的快速排序算法。在快速排序算法的每一步中,当数组还
22、没有被划分时,可以在ap:r中随机选出一个元素作为划分基准,这样可以使划分基准的选择是随机的,从而可以期望划分是较对称的。,最坏时间复杂度:O(n2)平均时间复杂度:O(nlogn)辅助空间:O(n)或O(logn)稳定性:不稳定,最接近点对问题,给定平面上n个点的集合S,找其中的一对点,使得在n个点组成的所有点对中,该点对间的距离最小。,最接近点对问题,如果S的最接近点对是p3,q3,即|p3-q3|d,则p3和q3两者与m的距离不超过d,即p3(m-d,m,q3(m,m+d。由于在S1中,每个长度为d的半闭区间至多包含一个点(否则必有两点距离小于d),并且m是S1和S2的分割点,因此(m-
23、d,m中至多包含S中的一个点。由图可以看出,如果(m-d,m中有S中的点,则此点就是S1中最大点。因此,我们用线性时间就能找到区间(m-d,m和(m,m+d中所有点,即p3和q3。从而我们用线性时间就可以将S1的解和S2的解合并成为S的解。,能否在线性时间内找到p3,q3?,最接近点对问题,下面来考虑二维的情形。,选取一垂直线l:x=m来作为分割直线。其中m为S中各点x坐标的中位数。由此将S分割为S1和S2。递归地在S1和S2上找出其最小距离d1和d2,并设d=mind1,d2,S中的最接近点对或者是d,或者是某个p,q,其中pP1且qP2。能否在线性时间内找到p,q?,最接近点对问题,考虑P
24、1中任意一点p,它若与P2中的点q构成最接近点对的候选者,则必有distance(p,q)d。满足这个条件的P2中的点一定落在一个d2d的矩形R中由d的意义可知,P2中任何2个S中的点的距离都不小于d。由此可以推出矩形R中最多只有6个S中的点。因此,在分治法的合并步骤中最多只需要检查6n/2=3n个候选者,能否在线性时间内找到p3,q3?,证明:将矩形R的长为2d的边3等分,将它的长为d的边2等分,由此导出6个(d/2)(2d/3)的矩形。若矩形R中有多于6个S中的点,则由鸽舍原理易知至少有一个(d/2)(2d/3)的小矩形中有2个以上S中的点。设u,v是位于同一小矩形中的2个点,则dista
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 递归 分治 动态 规划 回溯
链接地址:https://www.31ppt.com/p-6232878.html