积分的MATLAB求解.ppt
《积分的MATLAB求解.ppt》由会员分享,可在线阅读,更多相关《积分的MATLAB求解.ppt(20页珍藏版)》请在三一办公上搜索。
1、第8章 积分的MATLAB求解,编者,Outline,8.1 不定积分8.2 定积分8.3 反常积分8.4 积分的数值求解,8.1 不定积分,1.不定积分的定义 如果在区间 上,可导函数 的导函数为,即对任一,都有 或 那么函数 就称为 在区间 上的原函数。函数 的带有任意常数项的原函数称为 在区间 上的不定积分,记作其中记号 称为积分号,称为被积函数,称为被积表达式,称为积分变量,也即。,2.不定积分的几何意义 函数 的一个原函数 的图像称为 的一条积分曲线。对于任意常数,表示的是一族曲线,我们称这个曲线族为 的积分曲线族。因此,在几何上表示的是 的积分曲线族,而 正是积分曲线的斜率。积分曲
2、线族中的每一条曲线在对应于同一横坐标 处的切线都有相同的斜率,所以在这些点处,它们的切线相互平行,并且任意两条积分曲线的纵坐标之间相差一个常数。因此,积分曲线族中的每一条曲线都可以由曲线 沿 轴上下移动而得到,如图所示。图 曲线的积分曲线族3.不定积分的MATLAB符号求解 MATLAB符号运算工具箱中提供了int函数来求函数的不定积分,该函数的调用格式为:int(fx,x)%求函数f(x)关于x的不定积分,8.2 定积分,1.定积分的定义 设函数 在 上有界,在 中任意插入若干个分点把区间 分成 个小区间各个小区间的长度依次为在每个小区间 上任取一点,作函数值 与小区间长度 的乘积,并作和记
3、,如果不论对 怎样划分,也不论在小区间 上点 怎么选取,只要当 时,和 总趋于确定的极限,那么称这个极限 为函数 在区间 上的定积分,记作,即其中 叫做被积函数,叫做被积表达式,叫做积分变量,分别叫做积分下限和积分上限,叫做积分区间。,2.定积分的几何意义 设 在区间 上非负、连续。由直线 及曲线 所围成的图形,我们称之为曲边梯形。我们知道,矩形的高是不变的,它的面积可按公式 矩形面积=高底来定义和计算。而曲边梯形在底边上各点处的高 在区间 上是变动的,故它的面积不能直接按上述公式来定义和计算。然而由于曲边梯形的高 在区间 上是连续变化的,在很小一段区间上它的变化很小,近似于不变。因此,如果把
4、区间 划分为许多小区间,在每个小区间上用某一点处的高度来近似代替同一个小区间上的窄曲边梯形的变高,那么,每个窄曲边梯形就可近似地看成这样得到的窄矩形,如图所示。图 曲边梯形面积的近似求法 这样我们就可以将所有这些窄矩形面积的和作为曲边梯形面积的近似值。即 这也就是说,若在 上,则定积分 在几何上表示由曲线、轴及两条直线 所围成的曲边梯形的面积,这就是定积分的几何意义。若在 上,则定积分 在几何上表示由曲线、轴及两条直线 所围成的曲边梯形的面积的负值;若在 上 既取得正值又取得负值时,定积分 表示 轴上方图形面积减去 轴下方图形面积所得之差。,3.定积分的MATLAB符号求解 MATLAB中用于
5、求解定积分的符号函数仍是int,此时,其调用格式为:int(fx,x,a,b)%求函数f(x)关于x的在区间a,b上的定积分4.定积分的几何应用1.平面图形面积的计算 设在区间 上曲线 位于 之上,如图a)所示,则这两条曲线与直线 和 所包围的面积为更一般地,若没有指定两条曲线的位置关系,则它们所包围的面积为有时平面图形的边界曲线方程是 关于 的单值函数,这样,介于曲线 和 与直线 和 所包围的面积(示意图如图b)所示)为 a)曲线 和 所夹图形 b)曲线 和 所夹图形 图 平面图形的面积 对于采用极坐标的函数,计算由极坐标方程 所表示的曲线与矢径 和 之间的面积为,2.立体体积的计算 立体体
6、积的计算一般分为两类:一类是平行截面面积为已知的立体的体积计算,另一类是旋转体的体积计算。平行截面面积为已知的立体的体积 如果已知某立体上垂直于一定轴的各个截面的面积,那么,这个立体的体积可以用定积分来计算。如图所示,取上述定轴为 轴,并设该立体在过点 且垂直于 轴的两个平面之间。以 表示过点 轴的截面面积。假定 为 的已知的连续函数。这时,取 为积分变量,它的变化区间为;立体中相应于 上任一小区间 的一薄片的体积,近似于底面积为,高为 的扁柱体的体积,即体积元素 以 为被积表达式,在闭区间 上作定积分,便得所求立体的体积 图 平行截面面积已知的立体体积,旋转体的体积 旋转体都可以看作是由连续
7、曲线、直线 及 轴所围成的曲边梯形绕 轴旋转一周而成的立体。现在我们考虑用定积分来计算这种旋转体的体积。如图1所示,取横坐标 为积分变量,它的变化区间为。相应于 上的任一小区间 的窄曲边梯形绕 轴旋转而成的薄片的体积近似于以 为底半径、为高的扁圆柱体的体积,即体积元素以 为被积表达式,在闭区间 上作定积分,便得所求旋转体体积为 类似地,我们可以推出由曲线、直线 及 轴所围成的曲边梯形绕 轴旋转一周而成的旋转体(如图2所示)的体积为 图1 平面图形绕x轴旋转的旋转体 图2 平面曲线绕y轴旋转的旋转体,3.平面曲线弧长的计算 设曲线弧由参数方程给出,其中 在 上具有连续导数,且 不同时为零。现在来
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 积分 MATLAB 求解
链接地址:https://www.31ppt.com/p-6229989.html