磁粉探伤基础知识.ppt
《磁粉探伤基础知识.ppt》由会员分享,可在线阅读,更多相关《磁粉探伤基础知识.ppt(126页珍藏版)》请在三一办公上搜索。
1、第五单元 磁粉探伤,1 磁粉探伤基础知识1.1 磁粉探伤与磁性检测(分类方法)漏磁场探伤:是利用铁磁性材料或工件磁化后,在表面和近表面如有不连续性(材料的均质状态即致密性受到破坏)存在,则在不连续性处磁力线离开工件和进入工件表面发生局部畸变产生磁极,并形成可检测的漏磁场进行探伤的方法。漏磁场探伤包括磁粉探伤和利用检测元件探测漏磁场。其区别在于,磁粉探伤是利用铁磁性粉末磁粉,作为磁场的传感器,即利用漏磁场吸附施加在不连续性处的磁粉聚集形成磁痕,从而显示出不连续性的位置、形状和大小。利用检测元件探测漏磁场的磁场传感器有磁带、霍尔元件、磁敏二极管和感应线圈等。利用检测元件检测漏磁场:录磁探伤法、感应
2、线圈探伤法、霍尔元件检测法、磁敏二极管探测法。,1.2 磁粉探伤Magnetic Particle Testing,简称 MT基本原理是:,铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小。如图11所示。磁粉探伤的适用性和局限性 适用性:磁粉探伤适用于检测铁磁性材料表面和近表面尺寸很小、间隙极窄(如可检测出长0.1mm、宽为微米级的裂纹),目视难以看出的不连续性。,磁粉检测可对原材料、半成品、成品工件和在役的零部件检测探伤,还可对板材、型材、管材、棒材
3、、焊接件、铸钢件及锻钢件进行检测。马氏体不锈钢和沉淀硬化不锈钢具有磁性,可进行MT。MT可发现裂纹、夹杂、发纹、白点、折叠、冷隔和疏松等缺陷。磁粉检测程序 承压设备磁粉检测的七个程序是:(1)预处理;(2)磁化;(3)施加磁粉或磁悬液;(4)磁痕的观察与记录;(5)缺陷评级;(6)退磁;(7)后处理。,局限性:MT不能检测奥氏体不锈钢材料和用奥氏体不锈钢焊条焊接的焊缝,也不能检测铜、铝、镁、钛等非磁性材料。对于表面浅的划伤、埋藏较深的孔洞和与工件表面夹角小于20的分层和折叠难以发现。1.3 磁粉探伤方法与其他表面探伤方法的比较 P.6 表 1-1 磁粉检测在压力容器定期检验中的重要性,2 磁粉
4、探伤的物理基础,2.1 磁粉探伤中的相关物理量2.1.1 磁的基本现象磁性、磁体、磁极、磁化磁性:磁铁能够吸引铁磁性材料的性质叫磁性。磁体:凡能够吸引其他铁磁性材料的物体叫磁体。磁极:靠近磁铁两端磁性特别强吸附磁粉特别多的区域称为磁极。每一小块磁体总有两个磁极。磁化:使原来没有磁性的物体得到磁性的过程叫磁化。2.1.2 磁场和磁力线 磁场:具有磁性作用的空间磁场的特征、显示和磁力线磁场的特征:是对运动的电荷(或电流)具有作用力,在磁场变化 的同时也产生电场。磁场的显示:磁场的大小、方向和分布情况,可以利用磁力线来表 示。,磁力线,(a)马蹄形磁铁被校直成条形磁铁后N极和S极的位置,(b)具有机
5、加工槽的条形磁铁产生的漏磁场(c)纵向磁化裂纹产生的漏磁场,条形磁铁的磁力线分布,磁力线在每点的切线方向代表磁场的方向,磁力线的疏密程度反映磁场的大小。磁力线具有以下特性:磁力线是具有方向性的闭合曲线。在磁体内,磁力线是由S极到N极,在磁体外,磁力线是由N极出发,穿过空气进入S极的闭合曲线。磁力线互不相交。磁力线可描述磁场的大小和方向。磁力线沿磁阻最小路径通过。,2.1.3 真空中的恒定磁场1 磁感应强度B:设一电量为q的电荷在磁场中,以速度运动,其受到的最大磁力为Fm,则该点磁感应强度的大小为:磁感应强度B为矢量,其方向为该点处小磁针N极的方向,可以用右手螺旋法则来确定:由正电荷所受力Fm的
6、方向,关系沿小于的角度转向正电荷运动速度的方向,这时螺旋前进的方向便是该点B的方向,如图2-7所示;B的方向总是垂直于Fm 和组成的平面。图 2-7 B、Fm、的方向,在国际单位制中,力Fm的单位用牛顿(N),电量q的单位用库仑(C),速度v的单位用米/秒(m/s),磁感应强度的单位定为Ns/(Cm)N/(Am),称为特斯拉,用T表示,即 1T=1N/(Am)磁感应强度的另一个单位是高斯,用Gs表示,两个单位的换算关系为 1T=104Gs 地球磁场的数量级大约是10-4T,严格讲地球表面的磁场在赤道处约为0.310-4T,在两极处约为0.610-4T。大型的电磁铁能激发出约为2T的恒定磁场,超
7、导磁体能激发高达25T的磁场,人体心脏激发的磁场约为310-10T,而脉冲星表面的磁场约为108T。可以用磁感应线来描绘磁场的分布,并且规定:通过磁场中某点处垂直于B矢量的单位面积的磁感应线数等于该点B矢量的大小,该点磁感应线的切线方向为B矢量的方向。在任何磁场中,每一条磁感应线都是和闭合电流相互套链的无头无尾的闭合线,磁场较强的地方,磁感应线较密;反之,磁感应线就较疏,,2 磁通量在磁场中,通过一给定曲面的总磁感应线,称为通过该曲面的磁通量,用表示。在曲面上取面积元ds,如图所示,ds的法线方向与该点处磁感应强度方向之间的夹角为,则通过面积元ds的磁通量为所以,通过有限曲面S的磁通量为 磁通
8、量的单位为Tm2,叫做韦伯(Wb)。因此,磁感应强度也称为磁通密度。在CGS单位制中,磁通的单位是麦克斯韦(Mx),1 麦克斯韦表示通过1根磁力线,在SI单位制中,磁通的单位是韦伯(Wb),其换算关系为:1韦伯(Wb)108麦克斯韦(Mx)1麦克斯韦(Mx)10-8韦伯(Wb),对闭合曲面来说,一般规定取向外的指向为正法线的指向,这样,磁感应线从闭合面穿出处的磁通量为正,穿入处的磁通量为负。由于磁感应线是闭合线,因此穿入闭合曲面的磁感应线数必然等于穿出闭合曲面的磁感应线数,所以通过任一闭合曲面的总磁通量必然为零,即 上式称为磁场的高斯定理,是电磁场理论的基本方程之一。该定理说明,磁场是涡旋场,
9、其磁感应线无头无尾,恒是闭合的。,3.毕奥萨伐尔定律及其应用(1)毕奥萨伐尔定律 一个载流导体L在空间任一点P产生的磁感应强度可由毕奥萨伐尔定律来确定,即 电流元所激发的磁感应强度,式中,dl表示在载流导体上沿电流方向所取的线元,I为导线中的电流,r是从电流元所在点到P点的矢量r的大小,H/m,称为真空磁导率,dB的方向垂直于Idl与r组成的平面,指向为由Idl经小于的角度转向r时右螺旋前进的方向,如上图所示。(2)载流长直导体的磁场 设有长为L的载流直导体,其电流为I,计算离直导体距离为a的P点的磁感应强度时,先在直导体上任取一电流元Idl,如图2-11所示。按毕奥萨伐尔定律,这电流元在给定
10、P点的磁感应强度dB为 dB的方向由Idlr来确定,即垂直纸面向内,在图中用 表示。由于长直导体L上每一个电流元在P点的磁感应强dB的方向都是一致的(垂直纸面向内),所以矢量积分 可变为标量积分,由右图可得,从而得到:式中,1和2分别为直线的两个端点到P点的矢量与P点到直导线垂线之间的夹角。角从垂线向上转时取正值,从垂线向下转时取负值。,对于“无限长”载流直导体,则取 则上式变为,(3)载流圆线圈轴线上的磁场 设有圆形线圈L,半径为R,通以电流I,如图2-12所示。根据毕奥萨伐尔定律,圆线圈上任一电流元Idl在轴线P点产生的磁感应强度dB为 各电流元在P点的磁感应强度大小相等,方向各不相同,但
11、各dB与轴线成一相等的夹角(如上图)。我们把dB分解为平行于轴线的分矢量dB和垂直于轴线的分矢量dB。由于对称关系,任一直径两端的电流元在P点的磁感应强度的垂直轴线的分量dB大小相等,方向相反,因此,载流圆线圈上电流在P点dB互相抵消,而dB互相加强。所以P点磁感应强度为圆形线圈上所有电流元的dB的代数和,即,将 代入得,式中 为圆线圈的面积。,圆线圈轴线上各点的磁感应强度都沿轴线方向,与电流方向组成右手螺旋关系,离圆心距离x越远,磁场越弱。在圆心O点处,由上式得(4)载流直螺线管内部的磁场 直螺线管是指均匀地密绕在直圆柱面上的螺旋形线圈,如图所示。,最后经计算可得 如果螺线管为“无限长”,亦
12、即螺线管的长度较其直径大得多时,所以 这一结果说明:任何绕得很紧密的长螺线管内部轴线上的磁感应强度和点的位置无关。还可以证明,对于不在轴线上的内部各点B的值也等于,因此“无限长”螺线管内部的磁场是均匀的。,还可以证明,对于不在轴线上的内部各点B的值也等于,因此“无限长”螺线管内部的磁场是均匀的。对长螺线管的端点来说,例如在A1点,所以在A1点处的磁感应强度为 恰好是内部磁感应强度的一半。长直螺线管所激发的磁感应强度的方向沿着螺线管轴线,其指向可按右手定则确定,右手四指表示电流的流向,拇指就是磁场的指向。,4 安培环路定理 已知长直载流导体周围的磁感应线是一组以导体为中心的同心圆,如下图(a)所
13、示。在垂直于导线的平面内任意作一包围电流的闭合曲线L,如下图(b)所示,线上任一点P的磁感应强度为 式中I为导线中的电流,r为该点离开导线的距离。由图可知,所以按图中所示的绕行方向沿这条闭合曲线B矢量的线积分为,以上结果虽然是从长直载流导线的磁场的特例导出的,但其结论具有普遍性,对任意几何形状的通电导体的磁场都是适用的,而且当闭合曲线包围多根载流导线时也同样适用,故一般可写成 该式表达了电流与它所激发磁场之间的普遍规律,称为安培环路定理。,2.1.4 磁介质中的磁场 1.磁介质 能影响磁场的物质称为磁介质。各种宏观物质对磁场都有不同程度的影响,因此一般都是磁介质。设某一电流分布在真空中激发的磁
14、感应强度为B0,那么在同一电流分布下,当磁场中放进了某种磁介质后,磁化了的磁介质激发附加磁感应强度B,这时磁场中任一点的磁感应强度B等于B0和B的矢量和,即BB0B 顺磁性材料这类磁介质磁化后使磁介质中的磁感应强度B稍大于B0,即BB0,如铝、铬、锰、铂、氮等,能被磁体轻微吸引。抗磁性材料这类磁介质磁化后使磁介质中的磁感应强度B稍小于B0,即BB0,如铁、镍、钴、釓及其合金等,铁磁质能显著地增强磁场,能被磁体强烈吸引。,2.磁化强度 分子电流 分子磁矩 为了描述磁介质的磁化状态(磁化程度和磁化方向),我们引入磁化强度矢量M,它表示单位体积内所有分子磁矩的矢量和,即 在外磁场中,磁化了的磁介质会
15、激发附加磁场;这附加磁场起源于磁化了的介质内所出现的束缚电流(实质上是分子电流的宏观表现)。,设有一“无限长”的载流直螺线管,管内充满均匀磁介质,电流在螺线管内激发均匀磁场。在此磁场中磁介质被均匀磁化,这时磁介质中各个分子电流平面将转到与磁场的方向相垂直,下图表示磁介质内任一截面上分子电流排列的情况。从图(b)和(c)中可以看出,在磁介质内部任意一点处,总是有两个方向相反的分子电流通过,结果相互抵消;只有在截面边缘处,分子电流未被抵消,形成与截面边缘重合的圆电流。对磁介质的整体来说,未被抵消的分子电流是沿着柱面流动的,称为束缚面电流。对顺磁性物质,束缚面电流和螺线管上导体中的电流I方向相同;对
16、抗磁性物质,则两者方向相反。,设 为圆柱形磁介质表面上“单位长度的束缚面电流”,S 为磁介质的截面积,为所选取的一段磁介质的长度。在长度 上,束缚电流的总量值为,因此在这段磁介质总体积 中的总磁矩为所以 在图(a)所示的圆柱形磁介质的边界附近,取一长方形闭合回路ABCD,AB边在磁介质内部,它平行于圆柱轴线,长度为l,而BC、AD两边则垂直于柱面。在磁介质内部各点处,M都沿AB方向,大小相等,在柱外各点处M=0。所以M沿BC、CD、DA三边的积分为零,因而M对闭合回路ABCD的积分等于M沿AB边的积分,即,将 代入得 该式表明,磁化强度对闭合回路的线积分等于通过回路所包围的面 积内的总束缚电流
17、。该式虽是从均匀磁化介质及长方形闭合回路的简单特例导出的,但却是在任何情况都普遍适用的关系式。3.磁场强度 在电流产生磁场中有磁介质存在时,空间任一点的磁感应强度B等于导线中的电流(称为传导电流)所激发的磁场与磁介质磁化后束缚电流所激发的附加磁场的矢量和,这时安培环路定理应为,H 称为磁场强度矢量,其单位为安/米(A/m),故有 该式称为有磁介质时的安培环路定理,它表明H矢量的环流(沿任何闭合曲线的线积分)只和传导电流I有关,与磁介质的磁性无关。因为磁化强度M不仅和磁介质的性质有关,也和磁介质所在处的磁场有关,实验证明,对于各向同性的磁介质,在磁介质中任一点磁化强度M和磁场强度H 成正比,即
18、式中,为物质的磁化率,它对不同的物质是不同的,对抗磁质是负值,对顺磁质是正值,但都很小,对铁磁质为正,而且很高。,因为通常令 称为该磁介质的相对磁导率,于是有式中 称为磁介质的磁导率,或称为绝对磁导率。对于各向同性的磁介质,和都是无量纲的常数。所有顺磁性材料、抗磁性材料的磁化率都很小,其相对磁导率几乎等于1,这说明它们对原磁场只产生微弱的影响。为了形象地表示出磁场中H 矢量的分布,可以引入H 线(磁力线)来描述磁场,规定如下:磁力线上任一点的切线方向和该点H矢量的方向相同,磁力线的疏密程度代表H矢量的大小,磁力线越密,表示H越大,磁力线越疏,表示H越小。,2.2 铁磁性材料2.2.1 磁畴 在
19、铁磁质中,相邻铁原子中的电子间存在着非常强的交换耦合作用,这个相互作用促使相邻原子中电子磁矩平行排列起来,形成一个自发磁化达到饱和状态的微小区域,这些自发磁化的微小区域,称为磁畴。一个典型的磁畴宽度约为10-3cm,体积约为10-9cm3,内部大约含有1014个磁性原子。在没有外加磁场作用时,铁磁性材料内各磁畴的磁矩方向相互抵消,对外显示不出磁性,如下图a。,铁磁性材料的磁畴方向a)不显示磁性;b)磁化 c)保留一定剩磁 当把铁磁性材料放到外加磁场中去时,磁畴就会受到外加磁场的作用,一是使磁畴磁矩转动,二是使畴壁发生位移,最后全部磁畴的磁矩方向转向与外加磁场方向一致,铁磁性材料被磁化,显示出很
20、强的磁性。永久磁铁中的磁畴,在一个方向上占优势,因而形成N和S极,能显示出很强的磁性。在高温情况下,磁体中分子热运动会破坏磁畴的有规则排列,使磁体的磁性削弱。超过某一温度后,磁体的磁性也就全部消失而呈现顺磁性,实现了材料的退磁。铁磁性材料在此温度以上不能再被外加磁场磁化,并将失去原有的磁性的临界温度称为居里点或居里温度。从居里点以上的高温冷却下来时,只要没有外磁场的影响,材料仍然处于退磁状态。,一些铁磁性材料的居里点见下表,铁磁性材料的居里点,2.2.3 磁化过程(1)未加外加磁场时,磁畴磁矩杂乱无章,对外不显示宏观磁性,如图(a)(2)在较小的磁场作用下,磁矩方向与外加磁场方向一致或接近的磁
21、畴体积增大,而磁矩方向与外加磁场方向相反的磁畴体积减小,畴壁发生位移,如图(b)。(3)增大外加磁场时,磁矩转动畴壁继续位移,最后只剩下与外加磁场方向比较接近的磁畴,如图(c)。(4)继续增大外加磁场,磁矩方向转动,与外加磁场方向接近,如图(d)。(5)当外加磁场增大到一定值时,所有磁畴的磁矩都沿外加磁场方向有序排列,达到磁化饱和,相当于一个微小磁铁或磁偶极子,产生N极和S极,宏观上呈现磁性,如图(e)。,2.2.4 磁化曲线磁化曲线是表征铁磁性材料磁特性的曲线,用以表示外加磁场强度H与磁感应强度B的变化关系。BH曲线的测绘方法:采用如图所示的装置,曲线特征:,2.2.5 磁滞回线饱和磁场强度
22、 Bm 矫顽力 Hc,典型磁性材料30CrMnSiA 经880油淬,300回火状态下,测得的磁化曲线见下图,包括BH曲线,H曲线,和BrH曲线。,铁磁性材料的特性:高导磁性磁饱和性磁滞性根据矫顽力Hc大小分为软磁材料(Hc100A/m)和硬磁材料(Hc100A/m)。软磁材料与硬磁材料的特征(1)软磁材料是指磁滞回线狭长,具有高磁导率、低剩磁、低矫顽力和低磁阻的铁磁性材料。软磁材料磁粉检测时容易磁化,也容易退磁。软磁材料如电工用纯铁、低碳钢和软磁铁氧体等材料。(2)硬磁材料是指磁滞回线肥大,具有低磁导率、高剩磁、高矫顽力和高磁阻的铁磁性材料。硬磁材料磁粉检测时难以磁化,也难以退磁。硬磁材料如铝
23、镍钴、稀土钴和硬磁铁氧体等材料。(3)矩磁材料现代电机中常用的一种铁氧体材料的磁滞回线差不多呈矩形,故称矩磁材料。其特点是:一经磁化,其剩余磁感应强度接近于非常稳定的饱和值Bs。,2.2.6 退磁曲线和磁能积 退磁曲线是指最大磁滞回线在第二象限中部分,即Hc至Br之间的曲线段。如下图所示。在退磁曲线上任一点所对应的B与H的乘积,是标志磁性材料在该点上单位体积内所具有的能量。因为乘积(BH)的量纲是磁能密度,所以叫(BH)为磁能积。(BH)的乘积正比于图中划斜线的矩形面积。可以在退磁曲线上找到一点P其所对应的B与H的乘积为最大值,这点叫做最大磁能积点,其值(BH)m叫做最大磁能积。磁能积是Br和
24、Hc的综合参数,它表明工件在磁化后所能保留磁能量的大小,亦即剩磁的大小。磁能积的数值越大,表明保留在工件中的磁能越多。这在磁粉检测中是很有意义。最大磁能积可采用等磁能曲线法或几何作图法来确定。,2.3电流的磁场通电圆柱导体的磁场磁场方向:与电流方向有关,用右手定则确定。磁场大小:安培环路定律计算通电直长导体表面的磁场强度为:,H磁强强度(A/m)I电流强度(A)R圆柱导体半径(m)导体外r处(rR)和导体内部r处(rR 时 rR时 P.26 例1、例2直圆柱导体内、外及表面的磁场强度分布如右图所示:,应用钢棒通电法磁化 分别通交流和直流时,磁场强度和磁感应强度的分布特点,钢管中心导体法磁化 钢
25、管中心导体法磁化时,在通电中心导体内、外磁场分布与图2-17相同,由于中心导体为铜棒,其,所以只存在H。在钢管上由于,所以能感应产生较大的磁感应强度。并且钢管内壁的磁场强度和磁感应强度都比外壁大。应采用直流电或整流电理论计算及应用,2.3.2 通电钢管的磁场 磁场方向:右手定则 磁场大小:(1)钢管内表面 H=0,B=0(直流和交流)(2)钢管外表面及外部(3)钢管横截面 设管内外半径分别为R1和R2,通直流电磁化,由安培环路定律得()钢管直接通电法磁化时,由于其内部磁场强度为零,所以不能用磁粉检测的方法来检测内表面即近表面的缺陷。,2.3.3 通电线圈的磁场磁场方向:右手定则,磁场大小:空载
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 探伤 基础知识
链接地址:https://www.31ppt.com/p-6229768.html