高数同济24隐函数的导数.ppt
《高数同济24隐函数的导数.ppt》由会员分享,可在线阅读,更多相关《高数同济24隐函数的导数.ppt(30页珍藏版)》请在三一办公上搜索。
1、四、隐函数的导数 对数求导法 由参数方程所确定函数的导数,隐函数的导数 对数求导法由参数 方程所确定函数的导数,1、隐函数的导数 P102,定义:,隐函数的显化,问题:隐函数不易显化或不能显化如何求导?,如,例1 1),解,解得,隐函数求导法则:,用复合函数求导法则直接对方程两边求导.,2)设 y=y(x)由方程 ey=xe f(y)确定,f(x)二阶可导,f(x)1,求 y.,解 方程两边对x求导:ey y=e f(y)+x e f(y)f(y)y,故,3)函数y=y(x)由方程,所确定,求,解:,例2,解,所求切线方程为,显然通过原点.,例3,解,2、对数求导法,观察函数,方法:,先在方程
2、两边取对数,然后利用隐函数的求导方法求出导数.,-对数求导法,适用范围:,例4,解,等式两边取对数得,例5,解,等式两边取对数得,一般地,3、由参数方程所确定的函数的导数 P107,例如,消去参数,问题:消参困难或无法消参如何求导?,由复合函数及反函数的求导法则得,例6(1),解,所求切线方程为,P360,2)求对数螺线,在点,处的切线的直角坐标方程。,解:,曲线在点,处的切线的斜率为,因此,所求切线方程为,即,P360,例7,解,例8,解,注意:,小结,隐函数求导法则:直接对方程两边求导;,对数求导法:对方程两边取对数,按隐函数的求导法则求导;,参数方程求导:实质上是利用复合函数求导法则;,四、相关变化率,相关变化率问题:,已知其中一个变化率时如何求出另一个变化率?,相关方程,例8,解,仰角增加率,(相关方程),思考,解答,不对,对数求导法。,作业:P111:1-(2),2,3-(3)4-(1),5-(2),8-(2)(4),渐伸线与渐屈线,渐屈线,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 同济 24 函数 导数
链接地址:https://www.31ppt.com/p-6216300.html