静电场恒定电场和恒定磁场.ppt
《静电场恒定电场和恒定磁场.ppt》由会员分享,可在线阅读,更多相关《静电场恒定电场和恒定磁场.ppt(66页珍藏版)》请在三一办公上搜索。
1、第二章 静电场、恒定电场和恒定磁场,2.1静电场的基本方程1.真空中的高斯定理,式(2.7)中q为闭合曲面S所包围的自由电荷总电荷量。真空中的高斯定理表明,穿过任意一个高斯面的电场强度通量等于该闭合曲面所包围的自由电荷的总电量与真空中介电常数的比值。,2.电介质所谓电介质就是不导电的介质,如空气、纯净水、玻璃、橡胶等,它们的特点是绝大部分电荷处于束缚状态,不像导体内有自由移动的电子。,图2.1电介质的极化,式中电位移矢量为,介质中的高斯定理表示为,在线性的各向同性的电介质中,例2.1在空气中放入一个带电量为Q、半径为a的球体,该球体的相对介电常数为r。求该球体内、外任意一点的电场强度。解(1)
2、球内任意一点,设到球心距离为r,做高斯面为以r为半径的球面,如图2.2所示。由电场的对称性可知,E和D的方向为er,所以,图2.2,(2)在球外,高斯面为半径为r的球面,则高斯面包围的自由电荷即是Q,即q=Q所以,例2.2电介质中有一无限长带电直线,其线电荷密度为l,求空间任意一点的电场强度,电介质的相对介电常数为r。解:做高斯面S如图2.3所示,由对称性可知电场强度E只有er分量Er,而 分量、ez分量Ez被抵消了,均为零。,图2.3,在点电荷q的电场中任取一条曲线上的连续A、B两点,如图2.4所示,则静电场E(r)沿此曲线的线积分为,图2.4 静电场的线积分,例2.3在静电场 中,把带电量
3、为-2C的电荷从A(2,1,-1)点移到B(8,2,-1)点。求沿下列路径移动时电场力所做的功,如图2.5所示。,图2.5,3.静电场环量定理,(1)沿l1路径:(2)沿l2路径:ACB。,4.静电场的基本方程,人们把静电场的高斯定理和环量定理称为静电场的基本方程的积分形式,静电场基本方程的微分形式,解:根据静电场的基本方程微分形式可知,例2.4已知在自由空间球坐标系中电场分布为,求空间各点的体电荷密度分布。,2.2电位和电位方程,1.电位,静电场是无旋的矢量场,因此可以引入一个标量函数,这个标量函数称为电位函数 有如下关系:,设在空间两点A、B,则它们的电位差为,两点之间的电位差通常称为电压
4、。如果选取B点为电位参考点,即=0,则A点的电位为,例2.5对于例2.1求出球体内、外任意一点的电位。解:选取无穷远点为电位参考点则球体外半径为r的A点的电位为,在球面坐标系中,对于球体内半径为r的点A,其电位为,2.电位方程,泊松方程:,拉普拉斯方程,泊松方程在无界空间内,已知场源电荷分布,可根据场源积分法算出电位。,那么对于连续带电体,则可以取一电荷元dq,求出dq产生的电位,然后进行积分,式中,R为场点和源点的距离;为源点的区域。,对于体分布、面分布、线分布情况的电位分别表示为,体分布:,面分布:,线分布:,(2.25),(2.26),(2.27),例2.6在空气中,半径为a的圆平面上均
5、布面电荷密度为s的电荷(s为常数)。求在圆平面中心垂直轴线上任意点处的电位和电场强度。,解:由式(2.26)可知,如图2.6所示,,对上式求负梯度即得到电场强度E(z),由对称性可知E(z)只有ez分量,所以,图2.6,2.3静电场的边界条件,式(2.32)和式(2.33)是分界面上E的切向分量的边界条件。,下面讨论两种典型的边界条件(1)两种电介质的边界在两种不同介质的分界面上,没有自由电荷,即=0,所以式(2.30)和式(2.32)变为 D1n=D2n(2.34)E1t=E2t(2.35)式(2.34)还可写成电场强度法向分量的形式,即1E1n=2E2n(2.36)由于两种电介质12,电场
6、强度的法向分量在介质分界面上是不连续的。这是因为电场对电介质产生极化作用,而使在两种不同的分界面上产生极化面电荷。,(2)电介质和导体的边界导体是一种自身带有大量自由电荷的物质,在导体内部电场强度处处为零。设第一种媒质为电介质,第二种媒质为导体,则D2n=0,E2t=0,所以电介质与导体的边界条件为,以上两式说明,在导体表面的电介质中,电场强度没有切向分量,只有法向分量,即电场垂直于导体表面,且导体表面上由于静电感应的自由面电荷密度等于导体表面上电介质中电位移矢量的大小。,例2.8两块导电平板平行放置,其间填充厚度分别为d1、d2的两层电介质,相对介电常数分别为 和,如图2.10所示。两导电板
7、间的电压为U,忽略边缘效应,求它们之间电场强度及电荷分布。解:忽略边缘效应,近似认为导体板数靠近电介质1或电介质2一侧的表面的电荷是均匀分布的。这样在两种介质中的电场都是均匀的。,图2.10,图2.11,在电介质1和电介质2的分界面上无自由电荷,即s=0,但存在着极化电荷,极化面电荷密度为,2.9在两种各向同性的电介质分界面两侧,电场强度在电介质1中与法线的夹角为,在电介质2中与法线的夹角为,如图2.11所示,试推导、与、之间的关系。,解:由边界条件可知,界面上没有自由电荷,所以有,2.4导体系统的电容和静电场的能量,1.电容的概念,电容可定义为,(2.39),电容的单位是法拉(F),实际使用
8、时经常用到微法(F)或皮法(pF),两个导体在线性介质中,带有等量的异性电荷q和-q,两个导体间的电位差(也就是电压)为U,则这两个导体组成的导体系统的电容为C=q/U(2.40)也与两个导体的几何形状、大小、它们之间的距离和周围的电介质有关。两个导体组成的导体系统常称为电容器,通过设计两个导体的几何形状、大小、它们之间的距离和周围的电介质,即可以不用电容器。,例2.10同心金属球与球壳系统如图2.12所示,内导体球半径为a,外导体球壳的内外半径分别为b和c,导体球与导体球壳带有等量异号电荷,它们之间充满相对介电常数为 的电介质,球外为空气。求该导体系统的电容。解:根据高斯定理不难求出空间各点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 静电场 恒定 电场 磁场
链接地址:https://www.31ppt.com/p-6213057.html