阶微分方程的解法及应用.ppt
《阶微分方程的解法及应用.ppt》由会员分享,可在线阅读,更多相关《阶微分方程的解法及应用.ppt(40页珍藏版)》请在三一办公上搜索。
1、一阶微分方程的,一、一阶微分方程求解,二、解微分方程应用问题,解法及应用,第十二章,一、一阶微分方程求解,1.一阶标准类型方程求解,关键:辨别方程类型,掌握求解步骤,2.一阶非标准类型方程求解,变量代换法 代换自变量,代换因变量,代换某组合式,三个标准类型:,可分离变量方程,齐次方程,线性方程,1.求下列方程的通解,提示:(1),故为分离变量方程:,通解,方程两边同除以 x 即为齐次方程,令 y=u x,化为分,离变量方程.,调换自变量与因变量的地位,用线性方程通解公式求解.,化为,齐次方程.,2.求下列方程的通解:,提示:(1),令 u=x y,得,(2)将方程改写为,(伯努里方程),(分离
2、变量方程),原方程化为,令 y=u t,(齐次方程),令 t=x 1,则,可分离变量方程求解,化方程为,3.,设F(x)f(x)g(x),其中函数 f(x),g(x)在(,+),内满足以下条件:,(1)求F(x)所满足的一阶微分方程;,(2)求出F(x)的表达式.,解:(1),所以F(x)满足的一阶线性非齐次微分方程:,(2)由一阶线性微分方程解的公式得,于是,总习题:,(题3只考虑方法及步骤),P353题2 求以,为通解的微分方程.,提示:,消去 C 得,P353 题3 求下列微分方程的通解:,提示:令 u=x y,化成可分离变量方程:,提示:这是一阶线性方程,其中,P353 题1,2,3(
3、1),(2),(3),(4),(9),(10),提示:可化为关于 x 的一阶线性方程,提示:为伯努里方程,令,提示:可化为贝努里方程,令,原方程化为,即,则,故原方程通解,提示:令,例4.设河边点 O 的正对岸为点 A,河宽 OA=h,一鸭子从点 A 游向点,二、解微分方程应用问题,利用共性建立微分方程,利用个性确定定解条件.,为平行直线,且鸭子游动方向始终朝着点O,提示:如图所示建立坐标系.,设时刻t 鸭子位于点P(x,y),设鸭子(在静水中)的游速大小为b,求鸭子游动的轨迹方程.,O,水流速度大小为 a,两岸,则,关键问题是正确建立数学模型,要点:,定解条件,由此得微分方程,即,鸭子的实际
4、运动速度为,(齐次方程),练习题:,P354 题 5,6,P354 题5.已知某曲线经过点(1,1),轴上的截距等于切点的横坐标,求它的方程.,提示:设曲线上的动点为 M(x,y),令 X=0,得截距,由题意知微分方程为,即,定解条件为,此点处切线方程为,它的切线在纵,P354 题6.已知某车间的容积为,的新鲜空气,问每分钟应输入多少才能在 30 分钟后使车间空,的含量不超过 0.06%?,提示:设每分钟应输入,t 时刻车间空气中含,则在,内车间内,两端除以,并令,与原有空气很快混合均匀后,以相同的流量排出),得微分方程,(假定输入的新鲜空气,输入,的改变量为,t=30 时,解定解问题,因此每
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微分方程 解法 应用

链接地址:https://www.31ppt.com/p-6212353.html