量子力学中的对称性.PPT
《量子力学中的对称性.PPT》由会员分享,可在线阅读,更多相关《量子力学中的对称性.PPT(16页珍藏版)》请在三一办公上搜索。
1、第4章 量子力学中的对称性,本章是关于对称性、兼并和守恒律的一般性理论讨论。4.1 对称性、守恒律和简并一、经典物理中的对称性对拉格朗日函数:若,即广义动量为运动常数.类似地,若用哈密顿函数 的正则方程来讨论:,二、量子力学中的对称性,量子力学中的操作如平移、转动等是与一个幺正算符T相联系的,习惯上T常被称作对称算符。若T作用下系统不变,则称系统具有与T相关的对称性.对无穷小变化的操作,T可写为,其中G是该对称操作的厄米生成元。若H在T作用下不变,则根据海森堡运动方程,有,即G是运动常量。如动量是平移的生成元,若H在平移操作下不变,则动量是运动常量(守恒)。类似的,若H在转动下不变,则转动的生
2、成元角动量守恒。从态矢变化的角度看,若G与H对易,则 保持是G的本征态,且G的本征值不变:即使初始态矢不是G的本征态,G的期望值也是不变的(守恒)。,三、简并,若H,T=0,T为某对称算符,|n为本征值为En的能量本征态,则T|n也是相同能量的能量本征态。如果T|n与|n是不同的态,则称它们是能量简并态,体系有简并。有时T由连续参量表征T=T(),此时所有的T()|n态都简并(但简并度只是独立的T()|n态数)。如对转动,可构造H,J2,Jz的共同本征态|n;j,m。由上所知,所有D(R)|n;j,m态能量简并。由于,改变表征D(R)的连续参量,可得不同|njm的组合,故不同m的|njm是简并
3、的,简并度为2j+1。从H,J=0和J作用于|njm,也可知其有2j+1简并度作为应用,考虑原子中电子的状态,其所受势为。由于该势在转动下不变,故原子能级有2j+1重简并。若外加Z方向的电磁场,则电子所受的势不再在转动下不变,简并被(部分)消除。,4.2 分离对称性,宇称或空间反演,上面讨论的是连续性对称操作,即对称操作可由相继无穷小对称算符所得。量子力学中有用的对称操作并不限于此种形式,可有分立而非连续的对称操作,如宇称,晶格平移和时间反演。宇称或空间反演操作将r变为-r,而右手坐标系变为左手坐标系。量子力学中我们讨论的常是作用于态矢而不是坐标系的变换。,对称操作的两种等价方式:主动与被动,
4、一、宇称算符的基本性质,对|,用幺正算符表示宇称算符,|。要求位置算符的期望值变号,即则有位置本征态|x在宇称作用下变为本征值为-x的态:故由于用作用两次体系必恢复原状,故2=1=-1=+,是厄米的。对的本征态|,因|=2|,知=1,二、算符在宇称操作下的变换,由于先平移后反演等同于先反演后在相反方向平移:有或p,=0.该关系与p=dx/dt的预期相同。对轨道角动量L=xxp,可预期L,=0.对一般角动量,考虑到R(宇称)=-I,宇称和转动操作对易,故量子力学中的相应幺正算符也对易:D(R)=D(R),J=0.,三、矢量和赝矢量,在转动下x和J以相同方式变换,两者都是矢量,或一阶球张量,但x和
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 量子力学 中的 对称性
链接地址:https://www.31ppt.com/p-6211014.html