计量经济学第八章完整.ppt
《计量经济学第八章完整.ppt》由会员分享,可在线阅读,更多相关《计量经济学第八章完整.ppt(154页珍藏版)》请在三一办公上搜索。
1、第八章 特殊解释变量(1),一、随机解释变量问题二、实际经济问题中的随机解释变量问题 三、随机解释变量的后果四、工具变量法五、案例,基本假设:解释变量X1,X2,Xk是确定性变量。如果存在一个或多个随机变量作为解释变量,则称原模型出现随机解释变量问题。假设X2为随机解释变量。对于随机解释变量问题,分三种不同情况:,一、随机解释变量问题,对于模型,1.随机解释变量与随机误差项独立(Independence),2.随机解释变量与随机误差项同期无关(contemporaneously uncorrelated),但异期相关。,3.随机解释变量与随机误差项同期相关(contemporaneously
2、correlated)。,二、实际经济问题中的随机解释变量问题,在实际经济问题中,经济变量往往都具有随机性。但是在单方程计量经济学模型中,凡是外生变量都被认为是确定性的。于是随机解释变量问题主要表现于:用滞后被解释变量作为模型的解释变量的情况。,例如:,(1)耐用品存量调整模型:耐用品的存量Qt由前一个时期的存量Qt-1和当期收入It共同决定:Qt=0+1It+2Qt-1+t t=1,T,这是一个滞后被解释变量作为解释变量的模型。但是,如果模型不存在随机误差项的序列相关性,那么随机解释变量Qt-1只与t-1相关,与t不相关,属于上述的第2种情况。,(2)合理预期的消费函数模型,合理预期理论认为
3、消费Ct是由对收入的预期Yte所决定的:,预期收入Yte与实际收入Y间存如下关系的假设,容易推出,Ct-1是一随机解释变量,且与(t-t-1)高度相关(Why?)。属于上述第3种情况。,计量经济学模型一旦出现随机解释变量,且与随机扰动项相关的话,如果仍采用OLS法估计模型参数,不同性质的随机解释变量会产生不同的后果。下面以一元线性回归模型为例进行说明,三、随机解释变量的后果,随机解释变量与随机误差项相关图,(a)正相关,(b)负相关,拟合的样本回归线可能低估截距项,而高估斜率项。,拟合的样本回归线高估截距项,而低估斜率项。,对一元线性回归模型:,OLS估计量为,1、如果X与相互独立,得到的参数
4、估计量仍然是无偏、一致估计量。,已经得到证明,随机解释变量X与随机项的关系不同,参数OLS估计量的统计性质也会不同。,2、如果X与同期不相关,异期相关,得到的参数估计量有偏、但却是一致的。,kt的分母中包含不同期的X;由异期相关性知:kt与t相关,因此,,但是,3、如果X与同期相关,得到的参数估计量有偏、且非一致。,注意:如果模型中带有滞后被解释变量作为解释变量,则当该滞后被解释变量与随机误差项同期相关时,OLS估计量是有偏的、且是非一致的。即使同期无关,其OLS估计量也是有偏的,因为此时肯定出现异期相关。,2的证明中已得到,模型中出现随机解释变量且与随机误差项相关时,OLS估计量是有偏的。如
5、果随机解释变量与随机误差项异期相关,则可以通过增大样本容量的办法来得到一致的估计量;但如果是同期相关,即使增大样本容量也无济于事。这时,最常用的估计方法是工具变量法(Instrument variables)。,四、工具变量法,1、工具变量的选取,工具变量:在模型估计过程中被作为工具使用,以替代模型中与随机误差项相关的随机解释变量。选择为工具变量的变量必须满足以下条件:,(1)与所替代的随机解释变量高度相关;(2)与随机误差项不相关;(3)与模型中其它解释变量不相关,以避免出现多重共线性。,2、工具变量的应用,以一元回归模型的离差形式为例说明如下:,用OLS估计模型,相当于用xi去乘模型两边、
6、对i求和、再略去xii项后得到正规方程:,(*),解得,然而,如果Xi与i相关,即使在大样本下,也不存在(xii)/n0,则,在大样本下也不成立,OLS估计量不具有一致性。,由于Cov(Xi,i)=E(Xii)=0,意味着大样本下(xii)/n0,表明大样本下,成立,即OLS估计量具有一致性。,如果选择Z为X的工具变量,那么在上述估计过程可改为:,利用E(zii)=0,在大样本下可得到:,这种求模型参数估计量的方法称为工具变量法(instrumental variable method),相应的估计量称为工具变量法估计量(instrumental variable(IV)estimator)。
7、,对于矩阵形式:Y=X+,采用工具变量法(假设X2与随机项相关,用工具变量Z替代)得到的正规方程组为:,参数估计量为:,其中,称为工具变量矩阵,3、工具变量法估计量是一致估计量,一元回归中,工具变量法估计量为,如果工具变量Z选取恰当,即有,两边取概率极限得:,因此:,1、在小样本下,工具变量法估计量仍是有偏的。,注意:,2、工具变量并没有替代模型中的解释变量,只是在估计过程中作为“工具”被使用。,上述工具变量法估计过程可等价地分解成下面的两步OLS回归:第一步,用OLS法进行X关于工具变量Z的回归:,容易验证仍有:,因此,工具变量法仍是Y对X的回归,而不是对Z的回归。,3、如果模型中有两个以上
8、的随机解释变量与随机误差项相关,就必须找到两个以上的工具变量。但是,一旦工具变量选定,它们在估计过程被使用的次序不影响估计结果(Why?)。,4、OLS可以看作工具变量法的一种特殊情况。,5、如果1个随机解释变量可以找到多个互相独立的工具变量,人们希望充分利用这些工具变量的信息,就形成了广义矩方法(Generalized Method of Moments,GMM)。在GMM中,矩条件大于待估参数的数量,于是如何求解成为它的核心问题。工具变量法是GMM的一个特例。,6、要找到与随机扰动项不相关而又与随机解释变量相关的工具变量并不是一件很容易的事 可以用Xt-1作为原解释变量Xt的工具变量。,五
9、、案例中国居民人均消费函数,例 在例的中国居民人均消费函数的估计中,采用OLS估计了下面的模型:,由于:居民人均消费支出(CONSP)与人均国内生产总值(GDPP)相互影响,因此,容易判断GDPP与同期相关(往往是正相关),OLS估计量有偏并且是非一致的(低估截距项而高估计斜率项)。,OLS估计结果:,(13.51)(53.47)R2=0.9927 F=2859.23 DW=0.5503 SSR=23240.7,如果用GDPPt-1为工具变量,可得如下工具变量法估计结果:,(14.84)(56.04)R2=0.9937 F=3140.58 DW=0.6691 SSR=18366.5,GMM是近
10、20年计量经济学理论方法发展的重要方向之一。IV是GMM的一个特例。,如果1个随机解释变量可以找到多个互相独立的工具变量,人们希望充分利用这些工具变量的信息,就形成了广义矩方法(GMM)。在GMM中,矩条件大于待估参数的数量,于是如何求解成为它的核心问题。,8.3 滞后变量模型,一、滞后变量模型 二、分布滞后模型的参数估计 三、自回归模型的参数估计四、格兰杰因果关系检验,在经济运行过程中,广泛存在时间滞后效应。某些经济变量不仅受到同期各种因素的影响,而且也受到过去某些时期的各种因素甚至自身的过去值的影响。,通常把这种过去时期的,具有滞后作用的变量叫做滞后变量(Lagged Variable),
11、含有滞后变量的模型称为滞后变量模型。滞后变量模型考虑了时间因素的作用,使静态分析的问题有可能成为动态分析。含有滞后解释变量的模型,又称动态模型(Dynamical Model)。,一、滞后变量模型,1、滞后效应与与产生滞后效应的原因,因变量受到自身或另一解释变量的前几期值影响的现象称为滞后效应。表示前几期值的变量称为滞后变量。如:消费函数 通常认为,本期的消费除了受本期的收入影响之外,还受前1期,或前2期收入的影响:Ct=0+1Yt+2Yt-1+3Yt-2+tYt-1,Yt-2为滞后变量。,产生滞后效应的原因,1、心理因素:人们的心理定势,行为方式滞后于经济形势的变化,如中彩票的人不可能很快改
12、变其生活方式。2、技术原因:如当年的产出在某种程度上依赖于过去若干期内投资形成的固定资产。3、制度原因:如定期存款到期才能提取,造成了它对社会购买力的影响具有滞后性。,2、滞后变量模型,以滞后变量作为解释变量,就得到滞后变量模型。它的一般形式为:,q,s:滞后时间间隔,自回归分布滞后模型(autoregressive distributed lag model,ADL):既含有Y对自身滞后变量的回归,还包括着X分布在不同时期的滞后变量 有限自回归分布滞后模型:滞后期长度有限 无限自回归分布滞后模型:滞后期无限,,(1)分布滞后模型(distributed-lag model),分布滞后模型:模
13、型中没有滞后被解释变量,仅有解释变量X的当期值及其若干期的滞后值:,0:短期(short-run)或即期乘数(impact multiplier),表示本期X变化一单位对Y平均值的影响程度。i(i=1,2,s):动态乘数或延迟系数,表示各滞后期X的变动对Y平均值影响的大小。,如果各期的X值保持不变,则X与Y间的长期或均衡关系即为,称为长期(long-run)或均衡乘数(total distributed-lag multiplier),表示X变动一个单位,由于滞后效应而形成的对Y平均值总影响的大小。,2、自回归模型(autoregressive model),而,称为一阶自回归模型(first
14、-order autoregressive model)。,自回归模型:模型中的解释变量仅包含X的当期值与被解释变量Y的一个或多个滞后值,二、分布滞后模型的参数估计,无限期的分布滞后模型,由于样本观测值的有限性,使得无法直接对其进行估计。有限期的分布滞后模型,OLS会遇到如下问题:1、没有先验准则确定滞后期长度;2、如果滞后期较长,将缺乏足够的自由度进行估计和检验;3、同名变量滞后值之间可能存在高度线性相关,即模型存在高度的多重共线性。,1、分布滞后模型估计的困难,2、分布滞后模型的修正估计方法,人们提出了一系列的修正估计方法,但并不很完善。各种方法的基本思想大致相同:都是通过对各滞后变量加权
15、,组成线性合成变量而有目的地减少滞后变量的数目,以缓解多重共线性,保证自由度。(1)经验加权法 根据实际问题的特点、实际经验给各滞后变量指定权数,滞后变量按权数线性组合,构成新的变量。权数据的类型有:,递减型:,即认为权数是递减的,X的近期值对Y的影响较远期值大。如消费函数中,收入的近期值对消费的影响作用显然大于远期值的影响。例如:滞后期为 3的一组权数可取值如下:1/2,1/4,1/6,1/8则新的线性组合变量为:,即认为权数是相等的,X的逐期滞后值对值Y的影响相同。如滞后期为3,指定相等权数为1/4,则新的线性组合变量为:,矩型:,权数先递增后递减呈倒“V”型。例如:在一个较长建设周期的投
16、资中,历年投资X为产出Y的影响,往往在周期期中投资对本期产出贡献最大。如滞后期为4,权数可取为 1/6,1/4,1/2,1/3,1/5则新变量为,倒V型,例5.2.1 对一个分布滞后模型:,给定递减权数:1/2,1/4,1/6,1/8,令,原模型变为:,该模型可用OLS法估计。假如参数估计结果为,=0.5,=0.8,则原模型的估计结果为:,经验权数法的优点是:简单易行 缺点是:设置权数的随意性较大,通常的做法是:多选几组权数,分别估计出几个模型,然后根据常用的统计检验(方检验,检验,t检验,-检验),从中选择最佳估计式。,(2)阿尔蒙(lmon)多项式法,主要思想:针对有限滞后期模型,通过阿尔
17、蒙变换,定义新变量,以减少解释变量个数,然后用OLS法估计参数。主要步骤为:第一步,阿尔蒙变换 对于分布滞后模型,假定其回归系数i可用一个关于滞后期i的适当阶数的多项式来表示,即:,i=0,1,s,其中,ms-1。阿尔蒙变换要求先验地确定适当阶数k,例如取k=2,得,(*),将(*)代入分布滞后模型,得,定义新变量,将原模型转换为:,第二步,模型的OLS估计,对变换后的模型进行OLS估计,得,再计算出:,求出滞后分布模型参数的估计值:,由于m+1s,可以认为原模型存在的自由度不足和多重共线性问题已得到改善。,需注意的是,在实际估计中,阿尔蒙多项式的阶数m一般取2或3,不超过4,否则达不到减少变
18、量个数的目的。,例 表给出了中国电力基本建设投资X与发电量Y的相关资料,拟建立一多项式分布滞后模型来考察两者的关系。,由于无法预见知电力行业基本建设投资对发电量影响的时滞期,需取不同的滞后期试算。,(13.62)(1.86)(0.15)(-0.67),求得的分布滞后模型参数估计值为,经过试算发现,在2阶阿尔蒙多项式变换下,滞后期数取到第6期,估计结果的经济意义比较合理。2阶阿尔蒙多项式估计结果如下:,为了比较,下面给出直接对滞后6期的模型进行OLS估计的结果:,最后得到分布滞后模型估计式为:,(3)科伊克(Koyck)方法,科伊克方法是将无限分布滞后模型转换为自回归模型,然后进行估计。对于无限
19、分布滞后模型:,科伊克变换假设i随滞后期i按几何级数衰减:,其中,01,称为分布滞后衰减率,1-称为调整速率(Speed of adjustment)。,科伊克变换的具体做法:,将科伊克假定i=0i代入无限分布滞后模型,得,滞后一期并乘以,得,(*),将(*)减去(*)得科伊克变换模型:,(*),整理得科伊克模型的一般形式:,科伊克模型的特点:,(1)以一个滞后因变量Yt-1代替了大量的滞后解释变量Xt-i,最大限度地节省了自由度,解决了滞后期长度s难以确定的问题;(2)由于滞后一期的因变量Yt-1与Xt的线性相关程度可以肯定小于X的各期滞后值之间的相关程度,从而缓解了多重共线性。但科伊克变换
20、也同时产生了两个新问题:(1)模型存在随机项和vt的一阶自相关性;(2)滞后被解释变量Yt-1与随机项vt不独立。这些新问题需要进一步解决。,三、自回归模型的参数估计,一个无限期分布滞后模型可以通过科伊克变换转化为自回归模型。事实上,许多滞后变量模型都可以转化为自回归模型,自回归模型是经济生活中更常见的模型。以适应预期模型以及局部调整模型为例进行说明。,1、自回归模型的构造,(1)自适应预期(Adaptive expectation)模型,在某些实际问题中,因变量Yt并不取决于解释变量的当前实际值Xt,而取决于Xt的“预期水平”或“长期均衡水平”Xte。例如,家庭本期消费水平,取决于本期收入的
21、预期值;市场上某种商品供求量,决定于本期该商品价格的均衡值。因此,自适应预期模型最初表现形式是,由于预期变量是不可实际观测的,往往作如下自适应预期假定:,其中:r为预期系数(coefficient of expectation),0r 1。该式的经济含义为:“经济行为者将根据过去的经验修改他们的预期”,即本期预期值的形成是一个逐步调整过程,本期预期值的增量是本期实际值与前一期预期值之差的一部分,其比例为r。这个假定还可写成:,将,代入,得,(*),将(*)式滞后一期并乘以(1-r),得,(*),以(*)减去(*),整理得,其中,可见自适应预期模型转化为自回归模型。,(2)局部调整(Partia
22、l Adjustment)模型,局部调整模型主要是用来研究物资储备问题的。例如,企业为了保证生产和销售,必须保持一定的原材料储备。对应于一定的产量或销售量Xt,存在着预期的最佳库存Yte。局部调整模型的最初形式为,(9.3.7),Yte不可观测。由于生产条件的波动,生产管理方面的原因,库存储备Yt的实际变化量只是预期变化的一部分。,或:,(*),其中,为调整系数,0 1 将(*)式代入,得,可见,局部调整模型转化为自回归模型,储备按预定水平逐步进行调整,故有如下局部调整假设:,2、自回归模型的参数估计,考伊克模型:,对于自回归模型,估计时的主要问题:滞后被解释变量的存在可能导致它与随机扰动项相
23、关,以及随机扰动项出现序列相关性。,自适应预期模型:,显然存在:,局部调整模型:,存在:滞后被解释变量Yt-1与随机扰动项t的异期相关性。,因此,对自回归模型的估计主要需视滞后被解释变量与随机扰动项的不同关系进行估计。以一阶自回归模型为例说明:,(1)工具变量法,若Yt-1与t同期相关,则OLS估计是有偏的,并且不是一致估计。因此,对上述模型,通常采用工具变量法,即寻找一个新的经济变量Zt,用来代替Yt-1。参数估计量具有一致性。,对于一阶自回归模型,在实际估计中,一般用X的若干滞后的线性组合作为Yt-1的工具变量:,由于原模型已假设随机扰动项t与解释变量X及其滞后项不存在相关性,因此上述工具
24、变量与t不再线性相关。一个更简单的情形是直接用Xt-1作为Yt-1的工具变量。,(2)普通最小二乘法,若滞后被解释变量Yt-1与随机扰动项t同期无关(如局部调整模型),可直接使用OLS法进行估计,得到一致估计量。,上述工具变量法只解决了解释变量与t相关对参数估计所造成的影响,但没有解决t的自相关问题。事实上,对于自回归模型,t项的自相关问题始终存在,对于此问题,至今没有完全有效的解决方法。唯一可做的,就是尽可能地建立“正确”的模型,以使序列相关性的程度减轻。,注意:,例5.2.3 建立中国长期货币流通量需求模型,经验表明:中国改革开放以来,对货币需求量(Y)的影响因素,主要有资金运用中的贷款额
25、(X)以及反映价格变化的居民消费者价格指数(P)。,长期货币流通量模型可设定为,由于长期货币流通需求量不可观测,作局部调整:,(*),(*),将(*)式代入(*)得短期货币流通量需求模型:,对局部调整模型,运用OLS法估计结果如下,(-2.93)(2.86)(3.10)(2.87),最后得到长期货币流通需求模型的估计式:,注意:,尽管D.W.=1.733,但不能据此判断自回归模型不存在自相关(Why?)。但 LM=0.7855,=5%下,临界值2(1)=3.84,判断:模型已不存在一阶自相关。,如果直接对下式作OLS回归,(-4.81)(58.79)(5.05),得,可见该模型随机扰动项具有序
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量 经济学 第八 完整
链接地址:https://www.31ppt.com/p-6202994.html