计量经济学第四章完整.ppt
《计量经济学第四章完整.ppt》由会员分享,可在线阅读,更多相关《计量经济学第四章完整.ppt(40页珍藏版)》请在三一办公上搜索。
1、第四章 非线性回归模型的形式,一、模型的类型与变换 二、非线性回归实例,在实际经济活动中,经济变量的关系是复杂的,直接表现为线性关系的情况并不多见。,如著名的恩格尔曲线(Engle curves)表现为幂函数曲线形式、宏观经济学中的菲利普斯曲线(Pillips cuves)表现为双曲线形式等。但是,大部分非线性关系又可以通过一些简单的数学处理,使之化为数学上的线性关系,从而可以运用线性回归的方法进行计量经济学方面的处理。,一、模型的类型与变换,1、倒数模型、多项式模型与变量的直接置换法,例如,描述税收与税率关系的拉弗曲线:抛物线 s=a+b r+c r2 c0 s:税收;r:税率,设X1=r,
2、X2=r2,则原方程变换为 s=a+b X1+c X2 c0,2、幂函数模型、指数函数模型与对数变换法,例如,Cobb-Dauglas生产函数:幂函数 Q=AKLQ:产出量,K:投入的资本;L:投入的劳动,方程两边取对数:ln Q=ln A+ln K+ln L,3、复杂函数模型与级数展开法,方程两边取对数后,得到:,(1+2=1),Q:产出量,K:资本投入,L:劳动投入:替代参数,1、2:分配参数,例如,常替代弹性CES生产函数,将式中ln(1K-+2L-)在=0处展开台劳级数,取关于的线性项,即得到一个线性近似式。,如取0阶、1阶、2阶项,可得,并非所有的函数形式都可以线性化,无法线性化模型
3、的一般形式为:,其中,f(x1,x2,Xk)为非线性函数。如:,二、非线性回归实例,例 建立中国城镇居民食品消费需求函数模型。,根据需求理论,居民对食品的消费需求函数大致为,Q:居民对食品的需求量,X:消费者的消费支出总额P1:食品价格指数,P0:居民消费价格总指数。,零阶齐次性,当所有商品和消费者货币支出总额按同一比例变动时,需求量保持不变,(*),(*),为了进行比较,将同时估计(*)式与(*)式。,根据恩格尔定律,居民对食品的消费支出与居民的总支出间呈幂函数的变化关系:,首先,确定具体的函数形式,对数变换:,考虑到零阶齐次性时,(*),(*),(*)式也可看成是对(*)式施加如下约束而得
4、,因此,对(*)式进行回归,就意味着原需求函数满足零阶齐次性条件。,X:人均消费X1:人均食品消费GP:居民消费价格指数FP:居民食品消费价格指数XC:人均消费(90年价)Q:人均食品消费(90年价)P0:居民消费价格缩减指数(1990=100)P:居民食品消费价格缩减指数(1990=100,中国城镇居民人均食品消费,特征:消费行为在19811995年间表现出较强的一致性1995年之后呈现出另外一种变动特征。,建立19811994年中国城镇居民对食品的消费需求模型:,(9.03)(25.35)(-2.28)(-7.34),按零阶齐次性表达式回归:,(75.86)(52.66)(-3.62),为
5、了比较,改写该式为:,发现与,接近。,意味着:所建立的食品需求函数满足零阶齐次性特征,受约束回归,在建立回归模型时,有时根据经济理论需对模型中变量的参数施加一定的约束条件。,如:0阶齐次性 条件的消费需求函数 1阶齐次性 条件的C-D生产函数,模型施加约束条件后进行回归,称为受约束回归(restricted regression);不加任何约束的回归称为无约束回归(unrestricted regression)。,受约束回归,一、模型参数的线性约束 二、对回归模型增加或减少解释变量 三、参数的稳定性*四、非线性约束,一、模型参数的线性约束,对模型,施加约束,得,或,(*),(*),如果对(*
6、)式回归得出,则由约束条件可得:,然而,对所考查的具体问题能否施加约束?,需进一步进行相应的检验。常用的检验有:F检验、x2检验与t检验,,主要介绍F检验,在同一样本下,记无约束样本回归模型为,受约束样本回归模型为,于是,受约束样本回归模型的残差平方和RSSR,于是,ee为无约束样本回归模型的残差平方和RSSU,(*),受约束与无约束模型都有相同的TSS,由(*)式 RSSR RSSU从而 ESSR ESSU,这意味着,通常情况下,对模型施加约束条件会降低模型的解释能力。,但是,如果约束条件为真,则受约束回归模型与无约束回归模型具有相同的解释能力,RSSR 与 RSSU的差异变小。,可用RSS
7、R-RSSU的大小来检验约束的真实性,根据数理统计学的知识:,于是:,讨论:如果约束条件无效,RSSR 与 RSSU的差异较大,计算的F值也较大。,于是,可用计算的F统计量的值与所给定的显著性水平下的临界值作比较,对约束条件的真实性进行检验。,注意,kU-kR恰为约束条件的个数。,例 中国城镇居民对食品的人均消费需求实例中,对零阶齐次性检验:,取=5%,查得临界值F0.05(1,10)=4.96 判断:不能拒绝中国城镇居民对食品的人均消费需求函数具有零阶齐次特性这一假设。,无约束回归:RSSU=0.00324,kU=3 受约束回归:RSSR=0.00332,KR=2 样本容量n=14,约束条件
8、个数kU-kR=3-2=1,这里的F检验适合所有关于参数线性约束的检验,如:多元回归中对方程总体线性性的F检验:H0:j=0 j=1,2,k,这里:受约束回归模型为,这里,运用了ESSR 0。,二、对回归模型增加或减少解释变量,考虑如下两个回归模型,(*),(*),(*)式可看成是(*)式的受约束回归:,H0:,相应的统计量为:,如果约束条件为真,即额外的变量Xk+1,Xk+q对没有解释能力,则统计量较小;否则,约束条件为假,意味着额外的变量对有较强的解释能力,则统计量较大。因此,可通过F的计算值与临界值的比较,来判断额外变量是否应包括在模型中。,讨论:,统计量的另一个等价式,三、参数的稳定性
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量 经济学 第四 完整

链接地址:https://www.31ppt.com/p-6202990.html