计量经济学时间序列.ppt
《计量经济学时间序列.ppt》由会员分享,可在线阅读,更多相关《计量经济学时间序列.ppt(83页珍藏版)》请在三一办公上搜索。
1、第十一章时间序列计量经济学模型的理论与方法,第一节 时间序列的平稳性及其检验第二节 随机时间序列模型的识别和估计第三节 协整分析与误差修正模型,11.1 时间序列的平稳性及其检验,一、问题的引出:非平稳变量与经典回归模型二、时间序列数据的平稳性三、平稳性的图示判断四、平稳性的单位根检验五、单整、趋势平稳与差分平稳随机过程,一、问题的引出:非平稳变量与经典回归模型,常见的数据类型,到目前为止,经典计量经济模型常用到的数据有:时间序列数据(time-series data);截面数据(cross-sectional data)平行/面板数据(panel data/time-series cross
2、-section data)时间序列数据是最常见,也是最常用到的数据。,经典回归模型与数据的平稳性,经典回归分析暗含着一个重要假设:数据是平稳的。数据非平稳,大样本下的统计推断基础“一致性”要求被破怀。经典回归分析的假设之一:解释变量X是非随机变量放宽该假设:X是随机变量,则需进一步要求:(1)X与随机扰动项 不相关Cov(X,)=0,依概率收敛:,(2),第(2)条是为了满足统计推断中大样本下的“一致性”特性:,第(1)条是OLS估计的需要,如果X是非平稳数据(如表现出向上的趋势),则(2)不成立,回归估计量不满足“一致性”,基于大样本的统计推断也就遇到麻烦。,因此:,注意:在双变量模型中:
3、,表现在:两个本来没有任何因果关系的变量,却有很高的相关性(有较高的R2):例如:如果有两列时间序列数据表现出一致的变化趋势(非平稳的),即使它们没有任何有意义的关系,但进行回归也可表现出较高的可决系数。在现实经济生活中:情况往往是实际的时间序列数据是非平稳的,而且主要的经济变量如消费、收入、价格往往表现为一致的上升或下降。这样,仍然通过经典的因果关系模型进行分析,一般不会得到有意义的结果。,数据非平稳与“虚假回归”问题,二、时间序列数据的平稳性,时间序列分析中首先遇到的问题是关于时间序列数据的平稳性问题。,假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定
4、时间序列Xt(t=1,2,)的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:1)均值E(Xt)=是与时间t 无关的常数;2)方差Var(Xt)=2是与时间t 无关的常数;3)协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关,与时间t 无关的常数;则称该随机时间序列是平稳的(stationary),而该随机过程是一平稳随机过程(stationary stochastic process)。(平稳数列就是一列水平的数据,有趋势就不是平稳的),例一个最简单的随机时间序列是一具有零均值同方差的独立分布序列:Xt=t,tN(0,2),该序列常被称为是一个白噪声(white noise
5、)。由于Xt具有相同的均值与方差,且协方差为零,由定义,一个白噪声序列是平稳的。,三、平稳性检验的图示判断,给出一个随机时间序列,首先可通过该序列的时间路径图来粗略地判断它是否是平稳的。一个平稳的时间序列在图形上往往表现出一种围绕其均值不断波动的过程;而非平稳序列则往往表现出在不同的时间段具有不同的均值(如持续上升或持续下降)。,四、平稳性的单位根检验,对时间序列的平稳性除了通过图形直观判断外,运用统计量进行统计检验则是更为准确与重要的。单位根检验(unit root test)是统计检验中普遍应用的一种检验方法。1、DF检验我们已知道,随机游走序列 Xt=Xt-1+t是非平稳的,其中t是白噪
6、声。而该序列可看成是随机模型 Xt=Xt-1+t中参数=1时的情形。,也就是说,我们对式 Xt=Xt-1+t(*)做回归,如果确实发现=1,就说随机变量Xt有一个单位根。,(*)式可变形式成差分形式:Xt=(-1)Xt-1+t=Xt-1+t(*),检验(*)式是否存在单位根=1,也可通过(*)式判断是否有=0(若等于零就存在单位根,如果小于零则不存在单位根,即数列是平稳的.)。,一般地:,检验一个时间序列Xt的平稳性,可通过检验带有截距项的一阶自回归模型 Xt=+Xt-1+t(*)中的参数是否小于1。,或者:检验其等价变形式 Xt=+Xt-1+t(*)中的参数是否小于0。,在第二节中将证明,(
7、*)式中的参数1或=1时,时间序列是非平稳的;对应于(*)式,则是0或=0。,因此,针对式 Xt=+Xt-1+t 我们关心的检验为:零假设 H0:=0。备择假设 H1:0,上述检验可通过OLS法下的t检验完成。然而,在零假设(序列非平稳)下,即使在大样本下t统计量也是有偏误的(向下偏倚),通常的t 检验无法使用。Dicky和Fuller于1976年提出了这一情形下t统计量服从的分布(这时的t统计量称为统计量),即DF分布(见表)。由于t统计量的向下偏倚性,它呈现围绕小于零值的偏态分布。,因此,可通过OLS法估计 Xt=+Xt-1+t 并计算t统计量的值,与DF分布表中给定显著性水平下的临界值比
8、较:=P-1才是正确的.如果:t临界值,则拒绝零假设H0:=0,认为时间序列不存在单位根,是平稳的。,注意:在不同的教科书上有不同的描述,但是结果是相同的。例如:“如果计算得到的t统计量的绝对值大于临界值的绝对值,则拒绝=0”的假设,原序列不存在单位根,为平稳序列。,进一步的问题:在上述使用 Xt=+Xt-1+t对时间序列进行平稳性检验中,实际上假定了时间序列是由具有白噪声随机误差项的一阶自回归过程AR(1)生成的。但在实际检验中,时间序列可能由更高阶的自回归过程生成的,或者随机误差项并非是白噪声,这样用OLS法进行估计均会表现出随机误差项出现自相关(autocorrelation),导致DF
9、检验无效。另外,如果时间序列包含有明显的随时间变化的某种趋势(如上升或下降),则也容易导致上述检验中的自相关随机误差项问题。为了保证DF检验中随机误差项的白噪声特性,Dicky和Fuller对DF检验进行了扩充,形成了ADF(Augment Dickey-Fuller)检验。,2、ADF检验,ADF检验是通过下面三个模型完成的:,模型3 中的t是时间变量,代表了时间序列随时间变化的某种趋势(如果有的话)。检验的假设都是:针对H1:0,检验 H0:=0,即存在一单位根。模型1与另两模型的差别在于是否包含有常数项和趋势项。,实际检验时从模型3开始,然后模型2、模型1。,何时检验拒绝零假设,即原序列
10、不存在单位根,为平稳序列,何时检验停止(只要证明0则无需再证明)。否则,就要继续检验,直到检验完模型1为止。检验原理与DF检验相同,只是对模型1、2、3进行检验时,有各自相应的临界值。表给出了三个模型所使用的ADF分布临界值表。,五、单整、趋势平稳与差分平稳随机过程,随机游走序列 Xt=Xt-1+t经差分后等价地变形为 Xt=t 由于t是一个白噪声,因此差分后的序列Xt是平稳的。,单整,一般地,如果一个时间序列经过d次差分后变成平稳序列,则称原序列是d 阶单整(integrated of d)序列,记为I(d)。显然,I(0)代表一平稳时间序列。所谓单整指单独一个数列可以通过差分变成稳定数列的
11、数列.现实经济生活中:1)只有少数经济指标的时间序列表现为平稳的,如利率等;2)大多数指标的时间序列是非平稳的,如一些价格指数常常是2阶单整的,以不变价格表示的消费额、收入等常表现为1阶单整。大多数非平稳的时间序列一般可通过一次或多次差分的形式变为平稳的。但也有一些时间序列,无论经过多少次差分,都不能变为平稳的。这种序列被称为非单整的(non-integrated)。,如果一个时间序列经过一次差分变成平稳的,就称原序列是一阶单整(integrated of 1)序列,记为I(1)。,平稳,差分平稳:大多数序列可以差分实现平稳;如果非平稳是时间趋势导致的,则可以通过消除趋势来取得平稳。,11.2
12、 随机时间序列分析模型,一、时间序列模型的基本概念及其适用性二、随机时间序列模型的平稳性条件三、随机时间序列模型的识别四、随机时间序列模型的估计五、随机时间序列模型的检验,一、时间序列模型的基本概念及其适用性,1、时间序列模型的基本概念,随机时间序列模型(time series modeling)是指仅用它的过去值及随机扰动项所建立起来的模型,其一般形式为 Xt=F(Xt-1,Xt-2,t)建立具体的时间序列模型,需解决如下三个问题:(1)模型的具体形式(2)时序变量的滞后期(3)随机扰动项的结构 例如,取线性方程、一期滞后以及白噪声随机扰动项(t=t),模型将是一个1阶自回归过程AR(1):
13、Xt=Xt-1+t这里,t特指一白噪声。,一般的p阶自回归过程AR(p)是 Xt=1Xt-1+2Xt-2+pXt-p+t(*),(1)如果随机扰动项是一个白噪声(t=t),则称(*)式为一纯AR(p)过程(pure AR(p)process),记为 Xt=1Xt-1+2Xt-2+pXt-p+t(2)如果t不是一个白噪声,通常认为它是一个q阶的移动平均(moving average)过程MA(q):t=t-1t-1-2t-2-qt-q 该式给出了一个纯MA(q)过程(pure MA(p)process)。,将纯AR(p)与纯MA(q)结合,得到一个一般的自回归移动平均(autoregressiv
14、e moving average)过程ARMA(p,q):,Xt=1Xt-1+2Xt-2+pXt-p+t-1t-1-2t-2-qt-q,该式表明:(1)一个随机时间序列可以通过一个自回归移动平均过程生成,即该序列可以由其自身的过去或滞后值以及随机扰动项来解释。(2)如果该序列是平稳的,即它的行为并不会随着时间的推移而变化,那么我们就可以通过该序列过去的行为来预测未来。这也正是随机时间序列分析模型的优势所在。,经典回归模型的问题:迄今为止,对一个时间序列Xt的变动进行解释或预测,是通过某个单方程回归模型或联立方程回归模型进行的,由于它们以因果关系为基础,且具有一定的模型结构,因此也常称为结构式模
15、型(structural model)。然而,如果Xt波动的主要原因可能是我们无法解释的因素,如气候、消费者偏好的变化等,则利用结构式模型来解释Xt的变动就比较困难或不可能,因为要取得相应的量化数据,并建立令人满意的回归模型是很困难的。有时,即使能估计出一个较为满意的因果关系回归方程,但由于对某些解释变量未来值的预测本身就非常困难,甚至比预测被解释变量的未来值更困难,这时因果关系的回归模型及其预测技术就不适用了。,2、时间序列分析模型的适用性,例如,时间序列过去是否有明显的增长趋势,如果增长趋势在过去的行为中占主导地位,能否认为它也会在未来的行为里占主导地位呢?或者时间序列显示出循环周期性行为
16、,我们能否利用过去的这种行为来外推它的未来走向?随机时间序列分析模型,就是要通过序列过去的变化特征来预测未来的变化趋势。使用时间序列分析模型的另一个原因在于:如果经济理论正确地阐释了现实经济结构,则这一结构可以写成类似于ARMA(p,q)式的时间序列分析模型的形式。,在这些情况下,我们采用另一条预测途径:通过时间序列的历史数据,得出关于其过去行为的有关结论,进而对时间序列未来行为进行推断。,二、随机时间序列模型的平稳性条件,由于ARMA(p,q)模型是AR(p)模型与MA(q)模型的组合:Xt=1Xt-1+2Xt-2+pXt-p+t-1t-1-2t-2-qt-q,ARMA(p,q)模型的平稳性
17、,而MA(q)模型总是平稳的,因此ARMA(p,q)模型的平稳性取决于AR(p)部分的平稳性。当AR(p)部分平稳时,则该ARMA(p,q)模型是平稳的,否则,不是平稳的。,(1)一个平稳的时间序列总可以找到生成它的平稳的随机过程或模型;(2)一个非平稳的随机时间序列通常可以通过差分的方法将它变换为平稳的,对差分后平稳的时间序列也可找出对应的平稳随机过程或模型。因此,如果我们将一个非平稳时间序列通过d次差分,将它变为平稳的,然后用一个平稳的ARMA(p,q)模型作为它的生成模型,则我们就说该原始时间序列是一个自回归单整移动平均(autoregressive integrated moving
18、average)时间序列,记为ARIMA(p,d,q)。例如,一个ARIMA(2,1,2)时间序列在它成为平稳序列之前先得差分一次,然后用一个ARMA(2,2)模型作为它的生成模型的。当然,一个ARIMA(p,0,0)过程表示了一个纯AR(p)平稳过程;一个ARIMA(0,0,q)表示一个纯MA(q)平稳过程。,平稳性判断,如果一个序列进行相关性分析时,其相关很快趁向于零,那么该序列就是平稳的;如果其自相关系数明显拖尾,则是非平稳的。ARMA模型在建立前必须进行平衡性分析,如果是非平稳的,一定要通过差分让让其平稳。如果存在季节相关性也要通过季节差分消除相关性。如:Series sdg=df-d
19、f(-12)(这表示消除滞后12期季节波动),三、随机时间序列模型的识别,所谓随机时间序列模型的识别,就是对于一个平稳的随机时间序列,找出生成它的合适的随机过程或模型,即判断该时间序列是遵循一纯AR过程、还是遵循一纯MA过程或ARMA过程。所使用的工具主要是时间序列的自相关函数(autocorrelation function,ACF)及偏自相关函数(partial autocorrelation function,PACF)。,四、随机时间序列模型的估计,AR(p)、MA(q)、ARMA(p,q)模型的估计方法较多,大体上分为3类:(1)最小二乘估计;(2)矩估计;(3)利用自相关函数的直接
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量 经济学 时间 序列
链接地址:https://www.31ppt.com/p-6202933.html