菱形的定义、性质课件湘教版八年级下.ppt
《菱形的定义、性质课件湘教版八年级下.ppt》由会员分享,可在线阅读,更多相关《菱形的定义、性质课件湘教版八年级下.ppt(37页珍藏版)》请在三一办公上搜索。
1、菱形的定义、性质,菱形,1,情景创设,前面我们学习了平行四边形和矩形,知道了如果平行四边形有一个角是直角时,成为什么图形?,(矩形,由角变化得到),如果从边的角度,将平行四边形特殊化,又会得到什么特殊的四边形呢?,2,有一组邻边相等的平行四边形叫菱形,平行四边形,邻边相等,菱形,在平行四边形中,如果内角大小保持不变,仅改变边的长度,请仔细观察和思考,在这变化过程中,哪些关系没变?哪些关系变了?,活动一,如果改变了边的长度,使两邻边相等,那么这个平行四边形成为怎样的四边形?,相信你能解释!,AB=BC,ABCD,四边形ABCD是菱形,3,菱形的性质,4,5,菱形就在我们身边,图片欣赏,6,有同学
2、是这样做的:将一张长方形的纸对折、再对折,然后沿图中的虚线剪下,打开即可.你知道其中的道理吗?,如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?,7,菱形是轴对称图形,探究菱形的性质,(2)从图中你能得到哪些结论?并说明理由.,提示:从边、角、对角线、面积等方面来探讨,(1)观察得到的菱形,它是中心对称图形吗?它是轴对称图形吗?如果是,有几条对称轴?对称轴之间有什么位置关系?,菱形是中心对称图形,8,由于平行四边形的对边相等,而菱形的邻边相等,故:,菱形的性质2:菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。,菱形是特殊的平行四边形,具有平行四边形的所有性质.,菱形的性质:
3、,菱形的性质1:菱形的四条边都相等。,又:,9,已知:菱形ABCD的对角线AC和BD相交于点O,如下图,,证明:四边形ABCD是菱形,在ABD中,又BO=DO,AB=AD(菱形的四条边都相等),ACBD,AC平分BAD,同理:AC平分BCD;BD平分ABC和ADC,求证:ACBD;AC平分BAD和BCD;BD平分ABC和ADC,命题:菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;,10,菱形的 两条对角线互相平分,菱形的两组对边平行且相等,边,对角线,角,数学语言,菱形的性质,菱形的四条边相等,菱形的两组对角分别相等,菱形的邻角互补,菱形的两条对角线互相垂直平分,并且每一条对角线平分
4、一组对角。,四边形ABCD是菱形,AB=BC=CD=DA,DAC=BAC DCA=BCA ADB=CDB ABD=CBD ACBD,OA=OC;OB=OD,DAB=DCB ADC=ABC,DAB+ABC=180,11,【菱形的面积公式】,O,E,S菱形=BCAE,思考:计算菱形的面积除了上式方法外,利用对角线能 计算菱形的面积公式吗?,ABCD=SABD+SBCD=ACBD,S菱形,面积:S菱形=底高=对角线乘积的一半,12,大显身手,例1 如图,菱形花坛ABCD的边长为20m,ABC60度,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积(分别精确到0.01m和0.01m
5、),O,13,作 业,5、11、12,1、2、,14,例1变形,菱形ABCD的周长为16,相邻两角的度数比为1:2,求菱形ABCD的对角线的长;,求菱形ABCD的面积,15,补充例题:已知如图,菱形ABCD中,E是AB的中点,且DEAB,AB=1。求(1)ABC的度数;(2)对角线AC、BD的长;(3)菱形ABCD的面积。,16,如图,在菱形ABCD中,对角线AC、BD相交于点O,议一议,(2)有哪些特殊的三角形?,(1)图中有哪些线段是相等的?哪些角是相等的?,17,相等的线段:,相等的角:,等腰三角形:,直角三角形:,全等三角形:,已知四边形ABCD是菱形,AB=CD=AD=BC OA=O
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 菱形 定义 性质 课件 湘教版八 年级
链接地址:https://www.31ppt.com/p-6197544.html