般周期函数的傅里叶级数.ppt
《般周期函数的傅里叶级数.ppt》由会员分享,可在线阅读,更多相关《般周期函数的傅里叶级数.ppt(20页珍藏版)》请在三一办公上搜索。
1、,第八节,一般周期的函数的傅里叶级数,以2 l 为周期的函数的,傅里叶展开,机动 目录 上页 下页 返回 结束,第十二章,一、以2 l 为周期的函数的傅里叶展开,周期为 2l 函数 f(x),周期为 2 函数 F(z),变量代换,将F(z)作傅氏展开,f(x)的傅氏展开式,机动 目录 上页 下页 返回 结束,设周期为2l 的周期函数 f(x)满足收敛定理条件,则它的傅里叶展开式为,(在 f(x)的连续点处),其中,定理.,机动 目录 上页 下页 返回 结束,证明:令,则,令,则,所以,且它满足收敛,定理条件,将它展成傅里叶级数:,(在 F(z)的连续点处),变成,是以 2 为周期的周期函数,机
2、动 目录 上页 下页 返回 结束,其中,令,机动 目录 上页 下页 返回 结束,(在 f(x)的 连续点处),证毕,(在 F(z)的连续点处),机动 目录 上页 下页 返回 结束,说明:,其中,(在 f(x)的连续点处),如果 f(x)为偶函数,则有,(在 f(x)的连续点处),其中,如果 f(x)为奇函数,则有,机动 目录 上页 下页 返回 结束,机动 目录 上页 下页 返回 结束,注:无论哪种情况,在 f(x)的间断点 x 处,收敛于,傅里叶级数,例1.把,展开成,(1)正弦级数;(2)余弦级数.,解:(1)将 f(x)作奇周期延拓,则有,机动 目录 上页 下页 返回 结束,(2)将,作偶
3、周期延拓,则有,机动 目录 上页 下页 返回 结束,说明:此式对,也成立,由此还可导出,据此有,机动 目录 上页 下页 返回 结束,当函数定义在任意有限区间上时,令,即,在,上展成傅里叶级数,周期延拓,将,在,代入展开式,上的傅里叶级数,其傅里叶展开方法:,机动 目录 上页 下页 返回 结束,例3.将函数,展成傅里叶级数.,解:令,设,将F(z)延拓成周期为 10 的周期函数,理条件.,由于F(z)是奇函数,故,则它满足收敛定,机动 目录 上页 下页 返回 结束,机动 目录 上页 下页 返回 结束,为正弦 级数.,内容小结,1.周期为2l 的函数的傅里叶级数展开公式,(x 间断点),其中,当f(x)为奇 函数时,(偶),(余弦),2.在任意有限区间上函数的傅里叶展开法,变换,延拓,机动 目录 上页 下页 返回 结束,思考与练习,1.将函数展开为傅里叶级数时为什么最好先画出其图形?,答:易看出奇偶性及间断点,2.计算傅里叶系数时哪些系数要单独算?,答:用系数公式计算,如分母中出现因子nk,从而便于计算系数和写出,收敛域.,必须单独计算.,习题课 目录 上页 下页 返回 结束,备用题,期的傅立叶级数,并由此求级数,(91 考研),解:,为偶函数,因 f(x)偶延拓后在,展开成以2为周,的和.,故得,机动 目录 上页 下页 返回 结束,得,故,机动 目录 上页 下页 返回 结束,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 周期函数 傅里叶 级数
链接地址:https://www.31ppt.com/p-6196708.html