《结构材料的力学性能及选用修.ppt》由会员分享,可在线阅读,更多相关《结构材料的力学性能及选用修.ppt(55页珍藏版)》请在三一办公上搜索。
1、第三章 结构材料的力学性能及选用,第一节 建筑钢材第二节 混凝土第三节 钢筋遇混凝土的相互作用 粘结力,第一节 建筑钢材,一、钢材的力学性能(一)应力应变曲线(二)强度1.极限抗拉强度2.屈服强度(1)有明显屈服台阶的钢材(2)无明显屈服台阶的钢材,软刚和硬刚钢筋的强度和变形性能主要由单向拉伸测得的应力 应变曲线来表征。试验表明,钢筋的拉伸应力 应变曲线可分为两类:有明显的屈服点的钢筋(也称为软钢)见图3.1,没有明显屈服点的钢筋(也称为硬钢)见图3.3。,比例极限 有明显流幅的钢筋应力 应变曲线,轴向拉伸时,在达到比例极限a点之前,材料处于弹性阶段,软钢应力与应变的比值为常数,即为钢筋的弹性
2、模量Es,a为应力应变成比例的极限状态,它所对应的应力称为比例极限。,a,b,c,d,e,屈服极限 当应力达到b点后,材料开始屈服,b点称屈服的上限点,过点后,应力与应变曲线出现上下波动,形成一个明显的屈服台阶,屈服台阶的下限c点所对应的应力称为“屈服强度。,抗拉强度当钢筋屈服塑流到一定程度,即到达点以后,应力 应变曲线又开始上升,抗拉能力有所提高,随着曲线上升到最高点d,相应的应力称为钢筋的极限强度,cd段称为钢筋的强化阶段。过了d点以后,钢筋在薄弱处的断面将显着缩小,发生局部颈缩现象,变形迅速增加,应力随之下降,直到过点时试件被拉断。,图3-1,0.85b,b,0.2%,条件屈服强度(硬刚
3、)高碳钢与低碳钢不同,见图3.3,它没有明显的屈服台阶,塑性变形小,延伸率亦小,但极限强度高。通常用残余应变为0.2%的应力,约0.85b作为假想屈服点(或称条件屈服点),用0.2表示,0.85b 作为条件屈服强度。b 极限抗拉强度值。,图,(三)塑性1.伸长率2.冷弯性能,钢筋的伸长率 除强度指标外,钢筋还应具有一定的塑性变形能力。反映钢筋塑性性能的基本指标是伸长率和冷弯性能。所谓伸长率即钢筋拉断后的伸长值与原长的比率:,3-1,式中:伸长率(%)L-试件受力前的标距长度(有5d、10d、100d)L1-试件拉断后的标距长度 伸长率越大的钢筋塑性越好,即拉伸前有足够的伸长,使构件的破坏有预兆
4、;反之构件的破坏具有突发性而呈现脆性。,钢筋的冷弯性能 为了使钢筋在加工成型时不发生断裂,要求钢筋具有一定的冷弯性能。冷弯是将直径为d的钢筋绕某一规定直径为D的钢辊进行弯曲,在达到规定的冷弯角度(1800)时钢筋不发生裂纹、鳞落或断裂,就表示合格。见表3-1,表3-1 各种钢筋伸长率及冷弯试验要求,5 _表示试件长度为5d的钢筋的伸长率,(四)弹性模量,钢材在弹性阶段的应力和相应应变的比值为常量,该比值为钢材的弹性模量。Es=钢材的弹性模量可由拉伸试验测定,钢结构采用E=206106N/mm2钢筋的弹性模量见附表7。,二、钢材的冷加工(一)钢筋的冷拉 1.加工方法:在常温下将钢筋拉伸至屈服,然
5、后卸载;2.力学性质:经过一段时间后,再次拉伸时,其屈服强度将增 大,但塑性降低;3.时效硬化:被拉伸至屈服点,经过一段时间后,屈服强度增 加的现象。(二)钢筋的冷拔 1.加工方法:在常温下将钢筋拔过比其自身直径还小的硬质合金拔丝模拉伸至屈服;2.力学性质:经过一段时间后,再次拉伸或压缩时,其屈服强度将增大,但塑 性降低。,三、建筑钢材的品种,(一)钢筋,钢筋的成分、分类、级别、品种,成分:钢筋的主要成分为铁、还有少量的碳、锰、硅、钒、钛及一些有害元素如磷、硫等。刚材的强度随含碳量的增加而增加,但其塑性性能及可焊性随之降低。锰、硅、钒、钛等少量合金元素可是钢材的强度、塑性等综合性能提高。,分类
6、:我国建筑工程中采用的钢筋,按化学成分可分为碳素钢和普通低合金钢两大类。含碳量小于0.25%的碳素钢称为低碳钢或软钢,含碳量为0.6%3.4%的碳素钢称为高碳钢或硬钢。在碳素钢的元素中加入少量的合金元素,就成为普通低合金钢。如20MnSi、20MnSiV、20MnSiNb、20MnTi等。,级别及品种:我国建筑工程中采用的钢筋,国产普通钢筋有以下4级:热轧光面235级 热轧带肋335级,HRB400(20MnSiV、20MnSiNb、20MnTi):热轧带肋400级 RRB400(K20MnSi):余热处理钢筋400级(用HRB335(20MnSi)穿水热处理而成),各级别 性能见图3-4 2
7、0表示含碳量为0.2%,其余合金元素的含量在3.5%以下,k为控制的意思。,图3-4,表3-2普通钢筋强度标准值及设计值(N/mm2),注:1.当d大于40mm时,应有可靠的工程经验。2.fyk钢筋的标准强度,具有95%以上的保证率,由屈服极限确定。3.fy钢筋的抗拉强度设计值,fy钢筋的抗压强度设计值。,表3-3预应力钢筋强度标准值及设计值(N/mm2),表3-4钢筋 弹性模量(105N/mm2),注:必要时钢铰线可采用实测的弹性模量,热处理钢筋 上面所述为普通钢筋,而预应力钢筋采用热处理钢筋。由40Si2Mn(d=6)、48Si2Mn(d=9.2)和45Si2Cr(d=10)等通过加热、淬
8、火和回火等调质工艺处理制成的。热处理钢筋又称调质钢筋。,钢丝钢丝主要用于预应力混凝土结构中,有消除应力的光面钢丝、螺旋肋钢丝和三面刻痕钢丝三种。冷拔低碳钢丝由低碳热轧钢筋经冷拔制成,分为两个级别:甲级和乙级。冷拔低碳钢丝的延性较差,新规范中也未列入。若在建筑工程中采用时,应遵守专门规程的规定。,钢丝(直径在5mm以内)可以是单根的,也可以编成钢绞线或钢丝束。钢绞线钢绞线是由多根高强钢丝在绞丝机上绞合,再经低温回火制成。按其股数可分为3股和7股两种,高强钢丝、钢绞线的强度可达1700Nmm2以上。,钢筋的冷拉和冷拔,(1)冷拉 冷拉是将钢筋拉到超过钢筋屈服强度的某一应力值,以提高钢筋的抗拉强度,
9、达到节约钢材的目的。冷拉能提高钢筋抗拉强度,但不能提高抗压强度。冷拉能使钢筋伸长,能节省钢材,调直钢筋,自动除锈,检查焊接质量的作用。(2)冷拔 冷拔是将68的HPB235级钢筋,用强力从直径较小的硬质合金拔丝模拔出使它产生塑性变形,拔成较细直径的钢丝,以提高其强度的冷加工方法。冷拔后钢筋的强度得到了较大的提高,但塑性却有较大的降低。经过冷拔加工的低碳钢丝,须逐盘检验,分为甲、乙两级,甲级用作预应力钢筋,乙级用作非预应力钢筋。,k,k,l,k,k,d,e,冷拉只能提高钢筋的抗拉强度,故不宜用作受压钢筋;而冷拔可同时提高抗拉和抗压强度。必须指出,上述冷加工钢筋以大幅度牺牲延性来换取强度的有限提高
10、,终究不是提高结构性能的有效途径,近年来,强度高、性能好的钢筋(钢丝、钢绞丝)在我国已可充分供应,故冷拉钢筋和冷拔钢丝不在列入新混凝土规范,但并不是不允许使用这些钢筋。当应用这些钢筋时,应符合专门规程的规定。,钢筋的形式,(b),(a),(c),(d),光面钢筋(a):HPB235 带肋钢筋(b)-(d):(b)螺纹钢筋(c)人字纹钢筋(d)月牙形钢筋 我国带肋钢筋的外形目前生产的是月牙形。HRB335表面有阿拉伯数字“2”,HRB400表面有阿拉伯数字“3”。,(二)型钢和钢板四、钢材的选用(一)混凝土结构对钢筋的要求:较高的强度;良好的塑性;良好的可焊性;钢筋与混凝土良好的粘结力。(二)钢
11、筋的选用原则1.普通钢筋板HPB235,梁、柱HPB235,HRB335,HRB400;2.预应力钢筋钢铰线、钢丝和热处理钢筋。,第二节 混凝土,一、混凝土的强度(一)混凝土的抗压强度1.立方体抗压强度和立方体抗压强度标准值(1)立方体抗压强度的测试方法(2)立方体抗压强度标准值和混凝土的强度等级2.轴心抗压强度(二)混凝土的抗拉强度,1、混凝土的立方体抗压强(fcu)度及强度等级 混凝土结构中,主要是利用它的抗压强度。因此抗压强度是混凝土力学性能中最主要和最基本的指标。混凝土的强度等级是用抗压强度来划分的混凝土强度等级:边长150mm立方体标准试件,在标准条件下(203,90%湿度)养护28
12、天,用标准试验方法(加载速度0.150.3N/mm2/sec,两端不涂润滑剂)测得的具有95%保证率的立方体抗压强度,用符号C表示,C30表示fcu,k=30N/mm2,fcu,k混凝土强度标准值,注意:fcu与fcu,k的区别在于是否具有95%的保证率根据规范强度范围,从C15C80共划分为14个强度等级,级差为5N/mm2。与原规范GBJ10-89相比,混凝土强度等级由C60提高到C80,C50以上为高强混凝土。,如果采用的是100mm、200mm的非标准试件,应乘以0.95、1.05的系数将其折算成标准试件。规范GB500102规定:在钢筋混凝土结构中,混凝土的强度等级不宜低于C15;当
13、采用HRB335级钢筋时,混凝土强度等级不应低于C20;当采用HRB400和RRB400级钢筋以及的对承受重复荷载的构件,混凝土强度等级不得低于C20。预应力混凝土结构的混凝土强度等级不应低于C30;当采用预应力钢丝、钢绞线、热处理钢筋作预应力钢筋时,混凝土强度等级不宜低于C40。,2、混凝土轴心抗压强度 实际工程中,一般的受压构件不是立方体而是棱柱体,即构件的高度要比截面的尺寸大。一般用h/b=34的棱柱体抗压强度来代表混凝土单向均匀受压时的抗压强度。轴心抗压强度采用棱柱体试件测定,用符号fc表示,它比较接近实际构件中混凝土的受压情况,我国通常取150mm150mm450mm的棱柱体试件,也
14、常用100100300试件。对于同一混凝土,棱柱体抗压强度小于立方体抗压强度。棱柱体抗压强度和立方体抗压强度的换算关系为:,混凝土的轴心抗压设计强度:fc=fck/c,式中:fck混凝土轴心抗压强度标准值 fc混凝土轴心抗压强度设计值 0.88实验试件与实际结构的差异修正系数 c1棱柱体抗压强度与立方体抗压强度的比值,对C50以下取0.76,对C80取0.82,其间按 线性差值计算。c2C40以上混凝土脆性折减系数,C40取1.0,C80取0.87,其间按线性差值计算。c混凝土材料分项系数,取1.4,3、混凝土轴心抗拉强度 混凝土轴心抗拉强度ft是采用100mm100mm500mm的棱柱体,两
15、端设有螺纹钢筋(图5-7),在实验机上受拉来测定的。当试件拉裂时测得的平均拉应力即为混凝土的轴心抗拉强度。实验表明,混凝土的抗拉强度比抗压强度低得多,混凝土轴心抗拉强度只是混凝土立方体抗压强度的1/171/8倍,而且随混凝土强度等级的提高而减小。通过实验,新规范按下式计算:,图:3.7,式中:ftk混凝土轴心抗拉强度标准值 ft混凝土轴心抗拉强度设计值 c2C40以上混凝土脆性折减系数,C40取1.0,C80取0.87,其间按线性差值计算。混凝土立方体强度变异系数 c混凝土材料分项系数,取1.4 轴心受拉试验由于两端所埋设的钢筋不易对中,实测数据偏差较大,目前国内普遍采用立方体试件做劈拉试验来
16、代替。,(4)混凝土强度指标混凝土强度也有标准值和设计值之分,混凝土强度的标准值具有95%的保证率,若将其除以材料分项系数c(c=1.4),即得混凝土强度设计值,混凝土强度标准值按下表采用。,混凝土立方体强度实测值、立方体强度标准值、轴心抗压标准值、轴心抗拉标准值之间的关系,立方体强度实测值:每个立方体试件实际测得的强度值f 0cu立方体强度标准值:规范规定材料强度的标准值 应具有不小于95%的保证率,立方体强度标准值fcu,k即为混凝土强度等级,规范在确定混凝土轴心抗压强度和轴心抗拉强度标准值时,假定它们的变异系数与立方体强度的变异系数相同,利用与立方体强度平均值的换算关系,便可按上式计算得
17、到。同时,规范考虑到试件与实际结构的差异以及高强混凝土的脆性特征,对轴心抗压强度和轴心抗拉强度,还采用了以下两个折减系数:结构中混凝土强度与混凝土试件强度的比值,取0.88;脆性折减系数,对C40取1.0,对C80取0.87,中间按线性规律变化。,二、混凝土的变形 混凝土的变形可分为两类:一类是受力引起的变形;另一类是收缩和温度变化引起的变形。,(1)混凝土的受力变形混凝土单向受压时的应力应变曲线,混凝土单轴受力时的应力-应变关系反映了混凝土受力全过程的重要力学特征 是分析混凝土构件应力、建立承载力和变形计算理论的必要依据,也是利用计算机进行非线性分析的基础。试验表明混凝土完整的应力应变曲线包
18、括两部分:上升阶段和下降阶段。,混凝土单轴受压应力-应变关系曲线,常采用棱柱体试件来测定。在普通试验机上采用等应力速度加载,达到轴心抗压强度fc时,试验机中集聚的弹性应变能大于试件所能吸收的应变能,会导致试件产生突然脆性破坏,只能测得应力-应变曲线的上升段。采用等应变速度加载,或在试件旁附设高弹性元件与试件一同受压,以吸收试验机内集聚的应变能,可以测得应力-应变曲线的下降段。,图:3-9,强度等级越高,线弹性段越长,峰值应变也有所增大。但高强混凝土中,砂浆与骨料的粘结很强,密实性好,微裂缝很少,最后的破坏往往是骨料破坏,破坏时脆性越显著,下降段越陡。峰值应力fc所对应的应变0约为0.002左右
19、,应力小于0.3fc时混凝土处于弹性阶段,混凝土内部几乎没有裂缝,0.30.8 fc之间,混凝土内部裂缝发展,但能保持稳定,大于0.8 fc混凝土内部裂缝发展很快,塑性变形显著增大,体积应变逐渐由压缩转为扩张。,规范应力-应变关系,混凝土的弹性模量和变形模量弹性模量:通过应力应变曲线原点的切线斜率,用Ec表示,也叫原点模量。变形模量:在应力应变曲线上取一点,将该点与原点相连得到的直线的斜率,用Ec来表示,也叫割线模量。,弹性模量测定方法,图:3-14,表:3-6混凝土弹性模量(10-4N/mm2),注释:规范表 P17,(二)混凝土在荷载长期作用下的变形徐变1、徐变的定义2、徐变对结构的影响3
20、、影响徐变的因素,混凝土的徐变,混凝土在荷载的长期作用下,其变形随时间而不断增长的现象称为徐变。徐变会使结构(构件)的(挠度)变形增大,引起预应力损失,在长期高应力作用下,甚至会导致破坏。不过,徐变有利于结构构件产生内(应)力重分布,降低结构的受力(如支座不均匀沉降),减小大体积混凝土内的温度应力,受拉徐变可延缓收缩裂缝的出现。与混凝土的收缩一样,徐变与时间有关。因此,在测定混凝土的徐变时,应同批浇筑同样尺寸不受荷的试件,在同样环境下同时量测混凝土的收缩变形,从徐变试件的变形中扣除对比的收缩试件的变形,才可得到徐变变形。,在应力(0.5fc)作用瞬间,首先产生瞬时弹性应变,随荷载作用时间的延续
21、,变形不断增长,前4个月徐变增长较快,6个月可达最终徐变的(7080)%,以后增长逐渐缓慢,23年后趋于稳定。,影响徐变得因素内在因素是混凝土的组成和配比。骨料的刚度(弹性模量)越大,体积比越大,徐变就越小。水灰比越小,徐变也越小。环境影响包括养护和使用条件。受荷前养护的温湿度越高,水泥水化作用越充分,徐变就越小。采用蒸汽养护可使徐变减少(2035)%。受荷后构件所处的环境温度越高,相对湿度越小,徐变就越大。,应力条件 初应力水平si/fc和加荷时混凝土的龄期t0,它们影响徐变的非常主要的因素。当初始应力水平si/fc 0.5时,徐变值与初应力基本上成正比,这种徐变称为线性徐变。当初应力si
22、在(0.50.8)fc 范围时,徐变最终虽仍收敛,但最终徐变与初应力si不成比例,这种徐变称为非线性徐变。当初应力si 0.8fc 时,混凝土内部微裂缝的发展已处于不稳定的状态,徐变的发展将不收敛,最终导致混凝土的破坏。因此将0.8fc作为混凝土的长期抗压强度。高强混凝土的密实性好,在相同的s/fc比值下,徐变比普通混凝土小得多。但由于高强混凝土承受较高的应力值,初始变形较大,故两者总变形接近。此外,高强混凝土线性徐变的范围可达0.65fc,长期强度约为0.85fc,也比普通混凝土大一些。,(三)混凝土的收缩1、收缩的定义2、收缩对结构的影响三、混凝土强度等级的选用原则,混凝土的收缩变形 混凝
23、土在水中硬化时体积会膨胀,但其值较小,对混凝土影响不大。混凝土在空气中硬化时体积会缩小,这种现象称为混凝土的收缩。收缩是混凝土在不受外力情况下体积变化产生的变形。当这种自发的变形受到外部(支座)或内部(钢筋)的约束时,将使混凝土中产生拉应力,甚至引起混凝土的开裂。混凝土收缩会使预应力混凝土构件产生预应力损失。某些对跨度比较敏感的超静定结构(如拱结构),收缩也会引起不利的内力。,楼板干燥收缩裂缝与边框架的变形,图:3-16,混凝土的收缩是随时间而增长的变形,早期收缩变形发展较快,两周可完成全部收缩的25%,一个月可完成50%,以后变形发展逐渐减慢,整个收缩过程可延续两年以上。一般情况下,最终收缩
24、应变值约为(25)10-4 混凝土开裂应变为(0.52.7)10-4,图:3-17,影响因素 混凝土的收缩受结构周围的温度、湿度、构件断面形状及尺寸、配合比、骨料性质、水泥性质、混凝土浇筑质量及养护条件等许多因素有关。水泥用量多、水灰比越大,收缩越大。骨料弹性模量高、级配好,收缩就小。干燥失水及高温环境,收缩大。小尺寸构件收缩大,大尺寸构件收缩小。高强混凝土收缩大。影响收缩的因素多且复杂,要精确计算尚有一定的困难。在实际工程中,要采取一定措施减小收缩应力的不利影响施工缝。,第三节 钢筋遇混凝土的相互作用粘结力,一、粘结力的概念(一)定义(二)组成,钢筋与混凝土的粘结作用 钢筋与混凝土的粘结力,
25、是保证钢筋和混凝土共同工作的必要条件,其在混凝土中的粘结锚固力有以下四个方面:钢筋和混凝土接触面上的粘结化学吸附力,亦称胶结力。这来源于浇注时水泥浆体向钢筋表面氧化层的渗透和养护过程中水泥晶体的生长和硬化,从而使水泥胶体与钢筋表面产生吸附胶着作用。这种化学吸附力只能在钢筋和混凝土的界面处于原生状态时才存在,旦发生滑移,它就失去作用,其值很小,不起明显作用。钢筋与混凝土之间的摩阻力。由于混凝土凝固时收缩使钢筋与混凝土接触面上产生正应力,因此,当钢筋和混凝土产生相对滑移时(或有相对滑移的趋势时),在钢筋和混凝土的界面上将产生摩阻力。光面钢筋与混凝土的粘结力主要靠摩阻力。,钢筋与混凝土的咬合力。对于光面钢筋,咬合力是指表面粗糙不平而产生的咬合作用;对于带肋钢筋,咬合力是指带肋钢筋肋间嵌入混凝土而形成的机械咬合作用,这是带肋钢筋与混凝土粘结力的主要来源。机械锚固力弯钩、弯折及附加锚固措施所提供的粘结锚固作用。,(a)挤压产生的咬合力,(b)A-A剖面上的力,图:3-18,光面钢筋与混凝土的粘结强度()主要取决于胶结力和摩擦阻力。变形钢筋与混凝土的粘结强度()主要取决于咬合力。通过拔出试验按下式确定:,二、保证钢筋和混凝土之间粘结力的措施 1、足够的锚固长度 2、一定的搭接长度 3、钢筋周围的混凝土应有足够的厚度 4、钢筋末端做弯钩 5、配置箍筋 6、浇注混凝土时钢筋的位置,谢谢!,
链接地址:https://www.31ppt.com/p-6193675.html