管理运筹学5目标规划.ppt
《管理运筹学5目标规划.ppt》由会员分享,可在线阅读,更多相关《管理运筹学5目标规划.ppt(67页珍藏版)》请在三一办公上搜索。
1、运 筹 学(Operations Research),经济学核心课程,Chapter5 目标规划(Goal programming),目标规划问题及其数学模型目标规划的图解分析法目标规划应用举例,本章主要内容:,目标规划问题及其数学模型,问题的提出:目标规划是在线性规划的基础上,为适应经济管理多目标决策的需要而由线性规划逐步发展起来的一个分支。由于现代化企业内专业分工越来越细,组织机构日益复杂,为了统一协调企业各部门围绕一个整体的目标工作,产生了目标管理这种先进的管理技术。目标规划是实行目标管理的有效工具,它根据企业制定的经营目标以及这些目标的轻重缓急次序,考虑现有资源情况,分析如何达到规定目
2、标或从总体上离规定目标的差距为最小。,线性规划模型的特征是在满足一组约束条件下,寻求一个目标的最优解(最大值或最小值)。而在现实生活中最优只是相对的,或者说没有绝对意义下的最优,只有相对意义下的满意。1978年诺贝尔经济学奖获得者.西蒙(-美国卡内基-梅隆大学,1916-)教授提出“满意行为模型要比最大化行为模型丰富得多”,否定了企业的决策者是“经济人”概念和“最大化”行为准则,提出了“管理人”的概念和“令人满意”的行为准则,对现代企业管理的决策科学进行了开创性的研究,目标规划问题及其数学模型,目标规划问题及其数学模型,例5.1 某企业计划生产甲,乙两种产品,这些产品分别要在A,B,C,D四种
3、不同设备上加工。按工艺文件规定,如表所示。,问该企业应如何安排计划,使得计划期内的总利润收入为最大?,目标规划问题及其数学模型,解:设甲、乙产品的产量分别为x1,x2,建立线性规划模型:,其最优解为x14,x22,z14元,目标规划问题及其数学模型,但企业的经营目标不仅仅是利润,而且要考虑多个方面,如:力求使利润指标不低于12元;考虑到市场需求,甲、乙两种产品的生产量需保持1:1的比例;C和D为贵重设备,严格禁止超时使用;设备B必要时可以加班,但加班时间要控制;设备A即要求充分利用,又尽可能不加班。,要考虑上述多方面的目标,需要借助目标规划的方法。,目标规划问题及其数学模型,线性规划模型存在的
4、局限性:1)要求问题的解必须满足全部约束条件,实际问题中并非所有约束都需要严格满足。2)只能处理单目标的优化问题。实际问题中,目标和约束可以相互转化。3)线性规划中各个约束条件都处于同等重要地位,但现实问题中,各目标的重要性即有层次上的差别,同一层次中又可以有权重上的区分。4)线性规划寻求最优解,但很多实际问题中只需找出满意解就可以。,目标规划问题及其数学模型,目标规划怎样解决上述线性规划模型建模中的局限性?,1.设置偏差变量,用来表明实际值同目标值之间的差异。,偏差变量用下列符号表示:,d+超出目标的偏差,称正偏差变量d-未达到目标的偏差,称负偏差变量,正负偏差变量两者必有一个为0。当实际值
5、超出目标值时:d+0,d-=0;当实际值未达到目标值时:d+=0,d-0;当实际值同目标值恰好一致时:d+=0,d-=0;故恒有d+d-=0,目标规划问题及其数学模型,2.统一处理目标和约束。,对有严格限制的资源使用建立系统约束,数学形式同线性规划中的约束条件。如C和D设备的使用限制。,对不严格限制的约束,连同原线性规划建模时的目标,均通过目标约束来表达。,1)例如要求甲、乙两种产品保持1:1的比例,系统约束表达为:x1=x2。由于这个比例允许有偏差,当x1x2时,出现正偏差d+,即:x1-d+=x2或x1x2-d+=0,目标规划问题及其数学模型,正负偏差不可能同时出现,故总有:x1x2+d-
6、d+=0,若希望甲的产量不低于乙的产量,即不希望d-0,用目标约束可表为:,若希望甲的产量低于乙的产量,即不希望d0,用目标约束可表为:,若希望甲的产量恰好等于乙的产量,即不希望d0,也不希望d-0用目标约束可表为:,目标规划问题及其数学模型,3)设备B必要时可加班及加班时间要控制,目标约束表示为:,2)力求使利润指标不低于12元,目标约束表示为:,4)设备A既要求充分利用,又尽可能不加班,目标约束表示为:,目标规划问题及其数学模型,3.目标的优先级与权系数,在一个目标规划的模型中,为达到某一目标可牺牲其他一些目标,称这些目标是属于不同层次的优先级。优先级层次的高低可分别通过优先因子P1,P2
7、,表示。对于同一层次优先级的不同目标,按其重要程度可分别乘上不同的权系数。权系数是一个个具体数字,乘上的权系数越大,表明该目标越重要。,现假定:,第1优先级P1企业利润;第2优先级P2甲乙产品的产量保持1:1的比例 第3优先级P3设备A,B尽量不超负荷工作。其中设备A的重要性比设备B大三倍。,目标规划问题及其数学模型,上述目标规划模型可以表示为:,目标规划问题及其数学模型,目标规划数学模型的一般形式,达成函数,目标约束,其中:gk为第k个目标约束的预期目标值,和 为pl 优先因子对应各目标的权系数。,目标规划问题及其数学模型,用目标规划求解问题的过程:,明确问题,列出目标的优先级和权系数,构造
8、目标规划模型,求出满意解,满意否?,分析各项目标完成情况,据此制定出决策方案,N,Y,【例5.2】最优生产计划问题。某企业在计划期内计划生产甲、乙、丙三种产品。这些产品分别需要要在设备A、B上加工,需要消耗材料C、D,按工艺资料规定,单件产品在不同设备上加工及所需要的资源如表5.1所示。已知在计划期内设备的加工能力各为200台时,可供材料分别为360、300公斤;每生产一件甲、乙、丙三种产品,企业可获得利润分别为40、30、50元,假定市场需求无限制。企业决策者应如何安排生产计划,使企业在计划期内总的利润收入最大?,目标规划问题及其数学模型,表5.1 产品资源消耗,目标规划问题及其数学模型,最
9、优解X(50,30,10),Z3400,目标规划问题及其数学模型,现在决策者根据企业的实际情况和市场需求,需要重新制定经营目标,其目标的优先顺序是:(1)利润不少于3200元(2)产品甲与产品乙的产量比例尽量不超过1.5(3)提高产品丙的产量使之达到30件(4)设备加工能力不足可以加班解决,能不加班最好不加班(5)受到资金的限制,只能使用现有材料不能再购进,【解】设甲、乙、丙产品的产量分别为x1、x2、x3。如果按线性规划建模思路,最优解实质是求下列一组不等式的解,目标规划问题及其数学模型,目标规划问题及其数学模型,通过计算不等式无解,即使设备加班10小时仍然无解在实际生产过程中生产方案总是存
10、在的,无解只能说明在现有资源条件下,不可能完全满足所有经营目标,这种情形是按事先制定的目标顺序逐项检查,尽可能使得结果达到预定目标,即使不能达到目标也使得离目标的差距最小,这就是目标规划的求解思路,对应的解称为满意解下面建立例4.1的目标规划数学模型,目标规划问题及其数学模型,设d1-未达到利润目标的差值,d1+为超过目标的差值,当利润小于3200时,d1且d10,有40 x1+30 x2+50 x3+d1=3200成立当利润大于3200时,d1且d1,有40 x1+30 x2+50 x3-d1+=3200成立当利润恰好等于3200时,d1=且d1+=0,有40 x1+30 x2+50 x3=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 管理 运筹学 目标 规划
链接地址:https://www.31ppt.com/p-6192388.html