电磁场与电磁波-第四版-第三章.ppt
《电磁场与电磁波-第四版-第三章.ppt》由会员分享,可在线阅读,更多相关《电磁场与电磁波-第四版-第三章.ppt(54页珍藏版)》请在三一办公上搜索。
1、1,第3章 静态电磁场,2,本章内容 3.1 静电场分析 3.2 导电媒质中的恒定电场分析 3.3 恒定磁场分析,静态电磁场:场量不随时间变化,包括:静电场、恒定电场和恒定磁场,时变情况下,电场和磁场相互关联,构成统一的电磁场 静态情况下,电场和磁场由各自的源激发,且相互独立,3,3.1 静电场分析,学习内容 静电场的基本方程和边界条件 电位函数 导体系统的电容 静电场的能量,4,2.边界条件,微分形式:,本构关系:,1.基本方程,积分形式:,或,若分界面上不存在面电荷,即S0,则,或,3.1.1 静电场的基本方程和边界条件,5,由,即静电场可以用一个标量函数的梯度来表示,标量函数 称为静电场
2、的标量电位或简称电位。,1.电位函数的定义,电位函数,6,2.电位的表达式,对于连续的体分布电荷,由,面电荷的电位:,故得,点电荷的电位:,线电荷的电位:,7,3.电位差,上式两边从点P到点Q沿任意路径进行积分,得,关于电位差的说明,P、Q 两点间的电位差等于电场力将单位正电荷从P点移至Q 点 所做的功,电场力使单位正电荷由高电位处移到低电位处;电位差也称为电压,可用U 表示;电位差有确定值,只与首尾两点位置有关,与积分路径无关。,8,静电位不惟一,可以相差一个常数,即,选参考点,令参考点电位为零,电位确定值(电位差),两点间电位差有定值,选择电位参考点的原则 应使电位表达式有意义;应使电位表
3、达式最简单。若电荷分布在有限区域,通常取无 限远作电位参考点;同一个问题只能有一个参考点。,4.电位参考点,为使空间各点电位具有确定值,可以选定空间某一点作为参考点,且令参考点的电位为零,由于空间各点与参考点的电位差为确定值,所以该点的电位也就具有确定值,即,9,在均匀介质中,有,5.电位的微分方程,在无源区域,,10,6.静电位的边界条件,设P1和P2是介质分界面两侧紧贴界面的相邻两点,其电位分别为1和2。当两点间距离l0时,若介质分界面上无自由电荷,即,导体表面上电位的边界条件:,由 和,常数,,11,电容器广泛应用于电子设备的电路中:在电子电路中,利用电容器来实现滤波、移相、隔直、旁 路
4、、选频等作用;通过电容、电感、电阻的排布,可组合成各种功能的复杂 电路;在电力系统中,可利用电容器来改善系统的功率因数,以 减少电能的损失和提高电气设备的利用率;,3.1.3 导体系统的电容与部分电容,12,电容是导体系统的一种基本属性,是描述导体系统 储存电荷能力的物理量。,孤立导体的电容定义为所带电量q与其电位 的比值,即,1.电容,孤立导体的电容,两个带等量异号电荷(q)的导 体组成的电容器,其电容为,电容的大小只与导体系统的几何尺寸、形状和及周围电介质 的特性参数有关,而与导体的带电量和电位无关。,13,(1)假定两导体上分别带电荷+q 和-q;(2)计算两导体间的电场强度E;,计算电
5、容的步骤:,(4)求比值,即得出所求电容。,(3)由,求出两导体间的电位差;,14,解:设内导体的电荷为q,则由高斯定理可求得内外导体间的电场,同心导体间的电压,球形电容器的电容,当 时,,例3.1 同心球形电容器的内导体半径为a、外导体半径为b,其间填充介电常数为的均匀介质。求此球形电容器的电容。,15,例 3.2 如图所示的平行双线传输线,导线半径为a,两导线的轴线距离为D,且D a,求传输线单位长度的电容。,解 设两导线单位长度带电量分别为 和。由于,故可近似地认为电荷分别均匀分布在两导线的表面上。应用高斯定理和叠加原理,可得到两导线之间的平面上任一点P 的电场强度为,两导线间的电位差,
6、故单位长度的电容为,16,例3.3 同轴线内导体半径为a,外导体半径为为b,内外导体间填充的介电常数为 的均匀介质,求同轴线单位长度的电容。,内外导体间的电位差,解 设同轴线的内、外导体单位长度带电量分别为 和,应用高斯定理可得到内外导体间任一点的电场强度为,故得同轴线单位长度的电容为,17,如果充电过程进行得足够缓慢,就不会有能量辐射,充电过程中外加电源所作的总功将全部转换成电场能量,或者说电场能量就等于外加电源在此电场建立过程中所作的总功。,静电场能量来源于建立电荷系统的过程中外源提供的能量,静电场最基本的特征是对电荷有作用力,这表明静电场具有 能量。,任何形式的带电系统,都要经过从没有电
7、荷分布到某个最终电荷分布的建立(或充电)过程。在此过程中,外加电源必须克服电荷之间的相互作用力而作功。,3.1.4 静电场的能量,18,1.静电场的能量,设系统从零开始充电,最终带电量为 q、电位为。充电过程中某一时刻的电荷量为q、电位为。(01)当增加为(+d)时,外电源做功为:(q d)。对从0 到 1 积分,即得到外电源所做的总功为,根据能量守恒定律,此功也就是电量为 q 的带电体具有的电场能量We,即,对于电荷体密度为的体分布电荷,体积元dV中的电荷dV具有的电场能量为,19,故体分布电荷的电场能量为,对于面分布电荷,电场能量为,对于多导体组成的带电系统,则有,第i个导体所带的电荷,第
8、i个导体的电位,式中:,20,2.电场能量密度,从场的观点来看,静电场的能量分布于电场所在的整个空间。,电场能量密度:,电场的总能量:,对于线性、各向同性介质,则有,21,由于体积V外的电荷密度0,若将上式中的积分区域扩大到整个场空间,结果仍然成立。只要电荷分布在有限区域内,当闭合面S无限扩大时,则有,故,推证:,22,例3.4 半径为a 的球形空间内均匀分布有电荷体密度为的电荷,试求静电场能量。,解:利用 计算,根据高斯定理求得电场强度,故,23,3.2 导电媒质中的恒定电场分析,由JE 可知,导体中若存在恒定电流,则必有维持该电流的电场,虽然导体中产生电场的电荷作定向运动,但导体中的电荷分
9、布是一种不随时间变化的恒定分布,这种恒定分布电荷产生的电场称为恒定电场。,恒定电场与静电场重要区别:(1)恒定电场可以存在导体内部。(2)恒定电场中有电场能量的损耗,要维持导体中的恒定电流,就必须有外加电源来不断补充被损耗的电场能量。,恒定电场和静电场都是有源无旋场,具有相同的性质。,24,3.2.1 恒定电场的基本方程和边界条件,1.基本方程,恒定电场的基本方程为,微分形式:,积分形式:,恒定电场的基本场矢量是电流密度 和电场强度,线性各向同性导电媒质的本构关系,恒定电场的电位函数,由,若媒质是均匀的,则,25,2.恒定电场的边界条件,场矢量的边界条件,即,即,场矢量的折射关系,26,电位的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电磁场 电磁波 第四 第三
链接地址:https://www.31ppt.com/p-6188490.html