工程电磁场数值分析有限元法.ppt
《工程电磁场数值分析有限元法.ppt》由会员分享,可在线阅读,更多相关《工程电磁场数值分析有限元法.ppt(29页珍藏版)》请在三一办公上搜索。
1、工程电磁场数值分析(有限元法),华中科技大学电机与控制工程系陈德智2007.12,第4章 电磁场有限元法(Finite Element Method,FEM),有限元法可以基于变分原理导出,也可以基于加权余量法导出,本章以加权余量法作为有限元法的基础,以静电场问题的求解为例介绍有限元法的基本原理与实施步骤。并介绍有限元法中的一些特殊问题。,第4章 电磁场有限元法(FEM),有限元的基本原理与实施步骤有限元方程组的求解前处理与后处理技术渐近边界条件矢量有限元法求解运动导体涡流问题的迎风有限元法,在有限元法中,基函数一般用 表示。采用Galerkin方案,取权函数与基函数相同。使与余量正交化:,加
2、权余量法回顾:对算子方程用 作为该方程的近似解(试探解):代入方程得余量:,1.有限元法的基本原理与实施步骤,设L为线性算子,代入,得,或,记,得代数方程组:,加权余量法回顾(续),场域离散以二维静电场泊松方程的求解为例。二维问题常使用三角形单元离散,便于处理复杂的场域形状,容易实现。,单元:互不重叠,覆盖全部场域;每个单元内介质是 单一、均匀的。节点:网格的交点,待求变量的设置点。,需要记录信息:节点编号、节点坐标节点属性(激励源、是否边界等)单元编号单元节点编号单元介质,目标:建立节点变量之间满足的代数方程组,即确定系数Kij 和bi。依据的原理是加权余量法使用的基函数为分域基。,基函数
3、有限元采用分片逼近的思想,跟使用折线逼近一条任意曲线的做法相同。使用分域基Ni,基函数的个数等于节点的个数;每个基函数Ni的作用区域是与该节点i相关联的所有单元。,在积分 中,对于确定的 i,j的有效取值为i本身以及与节点i相联的周围节点,积分的有效区域为以i、j为公共节点的所有三角形单元,在这些单元中Ni、Nj才有交叠。,这些积分可以分单元进行。例如对右图所示的局部编码,K01、K00以及b0的计算公式为:,以下把单元e的贡献记为,这样,就有,每个 或 的计算都在具体的单元内单独考虑(称为单元分析)。,三角形单元内的基函数设三角形三个顶点处待求函数值分别为u1,u2,u3。如果单元足够小,可
4、以采用线性近似,将单元内任意p点的u(x,y)表示为,代入三个顶点的坐标和函数值,可以解出a、b、c。得到,单元节点的编号按逆时针方向排列!,其中,,记住我们的任务寻找基函数,对比,可得,基函数Ni常被称为插值函数或者形状函数,具有以下性质:(1)是插值的;(2)(3)在相邻单元的公共边界上,Ni是连续的,从而通过Ni构造的逼近函数也是连续的。,单元分析:计算单元内积分对系数阵和右端项元素的贡献。,系数阵元素:,当L为拉普拉斯算子时,由于Ni在单元内是(x,y)的线性函数,经Laplace算子作用后值为0。但是,在相邻单元的边界上,Ni是连续但是不光滑的,因此对积分的贡献主要来自边界。为考虑单
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工程 电磁场 数值 分析 有限元
链接地址:https://www.31ppt.com/p-6184576.html