《液体和固体介质的极化、电导和损耗.ppt》由会员分享,可在线阅读,更多相关《液体和固体介质的极化、电导和损耗.ppt(47页珍藏版)》请在三一办公上搜索。
1、,电介质的电气特性表现在电场作用下的,导电性能,介电性能,电气强度,液体和固体介质广泛用作电气设备的内绝缘,常用的液体和固体介质为:,液体介质:变压器油、电容器油、电缆油 固体介质:绝缘纸、纸板、云母、塑料、电瓷、玻璃、硅橡胶,第三章 液体和固体介质的电气特性,电导率(绝缘电阻率)介电常数 介质损耗角正切 击穿电场强度,表征参数:,第一节 液体和固体介质的极化、电导和损耗,电介质的极化 电介质的电导 电介质的损耗,电介质的极化是电介质在电场作用下,其束缚电荷相应于电场方向产生弹性位移现象和偶极子的取向现象。介电常数来表示极化强弱。对于平行平板电容器,极间为真空时:,一、电介质的极化,放置固体介
2、质时,电容量将增大为:,相对介电常数:,0-真空的介电常数,-介质的介电常数,r-介质的相对介电常数,A-极板面积,cm2,d-极间距离,cm,下面的表3-1列出了常用电介质的r值(20C时),r是反映电介质极化特性的一个物理量。,可见,气体r接近于1,液体和固体大多在26之间。,用于电容器的绝缘材料,显然希望选用r大的电介质,因为这样可使单位电容的体积减小和重量减轻。其他电气设备中往往希望选用r较小的电介质,这是因为较大的r往往和较大的电导率相联系,因而介质损耗也较大。,采用r较小的绝缘材料还可减小电缆的充电电流、提高套管的沿面放电电压等。,在高压电气设备中常常将几种绝缘材料组合在一起使用,
3、这时应注意各种材料的r值之间的配合,因为在工频交流电压和冲击电压下,串联的多层电介质中的电场强度分布与串联各层电介质的r成反比。,最基本的极化型式有电子式极化、离子式极化和偶极子极化等三种,另外还有夹层极化和空间电荷极化等。现简要介绍如下:,(一)电子式极化,在外电场 的作用下,介质原子中的电子轨道将相对于原子核发生弹性位移。正负电荷作用中心不再重合而出现感应偶极矩,其值为(矢量 的方向为由q指向q)。这种极化称为电子式极化或电子位移极化。,电子式极化存在于一切电介质中,有两个特点:完成极化需要的时间极短;外场消失,整体恢复中性。所以这种极化不产生能量损耗,不会使介质发热。,(二)离子式极化,
4、固体无机化合物大多属离子式结构,无外电场时,晶体的正、负离子对称排列,各个离子对的偶极矩互相抵消,故平衡极矩为零。,在出现外电场后,正、负离子将发生方向相反的偏移,使平均偶极矩不再为零,介质呈现极化。,离子式极化的特点:1、离子相对位移有限,外电场消失后即恢复原状;2、所需时间很短,其 几乎与外电场频率无关。,温度对离子式极化的影响:1、离子间的结合力会随温度的升高而减小,从而使极化程度增强;2、离子的密度随温度的升高而减小,使极化程度减弱。通常前一种影响较大,故其 一般具有正的温度系数。,(三)偶极子极化,极性电介质:分子具有固有的电矩,即正、负电荷作用中心永不重合,由极性分子组成的电介质称
5、为极性电介质。,极性分子不存在外电场时,极性分子的偶极子因热运动而杂乱无序的排列着,如图所示,宏观电矩等于零,因而整个介质对外并不表现出极性。,出现外电场后,原先排列杂乱的偶极子将沿电场方向转动,作较有规则的排列,如图所示,因而显示出极性。这种极化称为偶极子极化或转向极化。,偶极子极化是非弹性的,极化过程需要消耗一定的能量,极化所需的时间也较长,1010102s,所以极性电介质的 值与电源频率有较大关系。,偶极子极化与频率f 的关系:,频率太高时,偶极子将来不及转动,因而其 值变小,如图所示。其中 相当于直流电场下的相对介电常数,f f1 以后偶极子将越来越跟不上电场的交变,值不断下降;当f
6、f2 时,偶极子已完全不跟着电场转动了,这时只存在电子式极化,减小到。,偶极子极化与温度t的关系:,温度升高时,分子热运动加剧,阻碍极性分子沿电场取向,使极化减弱,所以通常极性气体介质有负的温度系数。,对液体和固体介质,温度很低时,分子间联系紧密,偶极子转动比较困难,所以 很小。液体、固体介质的 在低温下先随温度的升高而增大,以后当热运动变得较强烈时,分子热运动阻碍极性分子沿电场取向,使极化减弱,又开始随着温度的上升而减小。,如图3-6为极性液体、固体介质的 与温度的关系。,(四)夹层极化,凡是由不同介电常数和电导率的多种电介质组成的绝缘结构,在加上外电场后,各层电压将从开始时按介电常数分布逐
7、渐过渡到稳态时按电导率分布。在电压重新分配的过程中,夹层界面上会积聚起一些电荷,使整个介质的等值电容增大,这种极化称为夹层介质界面极化,简称夹层极化。,t=0时合上开关,电压分配与电容成正比:,t=,电压分配将与电导成反比:,一般 即C1、C2上的电荷需要重新分配,设C1G2,则由上面两式:,t=0时,U1U2 t 时,U1U2,可得:,可见,随着时间t的增加,U1下降而U2增高,总的电压U保持不变。这就意味着C1要通过G1放掉一部分电荷,而C2要通过G1从电源再补充一部分电荷。,于是分界面上将积聚起一批多余的空间电荷,这就是夹层极化引起的吸收电荷,电荷积聚过程所形成的电流称为吸收电流。,由于
8、这种极化涉及电荷的移动和积聚,必然伴随能量损耗,而且过程较慢,一般需要几分之一秒、几秒、几分钟、甚至几小时,所以这种极化只有在直流和低频交流电压下才能表现出来。,二、电介质的电导,电导率表征电介质导电性能的主要物理量,其倒数为电阻率。按载流子的不同,电介质的电导又可分为离子电导和电子电导两种。,1、电子电导:一般很微弱,因为介质中自由电子数极少;如果电子电流较大,则介质已被击穿。,2、离子电导:本征离子电导:极性电介质有较大的本征离子电导,电阻率10101014 杂质离子电导:在中性和弱极性电介质中,主要是杂质离子电导,电阻率10171019,3、电泳电导:载流子为带电的分子团,通常是乳化状态
9、的胶体粒子(例如绝缘油中的悬浮胶粒)或细小水珠,他们吸附电荷后变成了带电粒子。,4、表面电导:对于固体介质,由于表面吸附水分和污秽存在表面电导,受外界因素的影响很大。所以,在测量体积电阻率时,应尽量排除表面电导的影响,应清除表面污秽、烘干水分、并在测量电极上采取一定的措施。,固体、液体介质的电导率 与温度T 的关系:,式中:A、B 为与介质有关的常数,其中固体介质的常数B 通常比液体介质的B 值大的多。T 为绝对温度,单位为K。该式表明,随温度T 按指数规律上升。,三、电介质的损耗,(一)电介质的损耗的基本概念,介质损耗:在电场作用下电介质中总有一定的能量损耗,包括由电导引起的损耗和某些有损极
10、化(例如偶极子、夹层极化)引起的损耗,总称介质损耗。,直流下:电介质中没有周期性的极化过程,只要外加电压还没有达到引起局部放电的数值,介质中的损耗将仅由电导组成,所以可用体积电导率和表面电导率说明问题,不必再引入介质损耗这个概念了。,式中:电源角频率;功率因数角;介质损耗角。,交流时:流过电介质的电流,此时介质的功率损耗:,(3-7),介质损耗角为功率因数角的余角,其正切tg又可称为介质损耗因数,常用百分数()来表示。有损介质等值电路如图所示,电介质中流过的是电容电流,吸收电流 和传导电流。三个分量叠加在一起为总电流。,可采用并联等值电路或串联等值电路来分析,并联电导损耗 串联介质损耗,总电流
11、表示在直流电压作用下,流过绝缘的总电流随时间变化的曲线,称为吸收曲线。,1、并联等值电路,按图3-9,有:,介质损耗角正切 等于有功电流和无功电流的比值,即:,此时功率损耗为:,与式(3-7)所得介质损耗完全相同。,2、串联等值电路,有损电介质可用一只理想的无损耗电容 和一个电阻r 相串联的等值电路来代替,如图所示。,(3-9),由向量图有:,由于:,所以:,介质损耗角 值一般很小,所以:,(3-11),比较式(3-9)和式(3-11),说明两种电路电容值几乎一样,可用同一电容表示。,(二)气体、液体和固体介质的损耗,1.气体介质损耗,气体中的电场强度达到放电起始场强E0时,气体中发生局部放电
12、,这时损耗将急剧增大。,损耗主要由电导引起,其损耗率(单位体积电介质的功率损耗)为:,与温度有指数关系,P0也以指数规律随温度的上升而增大。极性液体介质的损耗 与温度的关系如图所示。,2.液体介质损耗,(1)中性和弱极性液体介质,在低温时,极化损耗和电导损耗都较小,随着温度的升高,液体的粘度减小,偶极子转向极化增加,电导损耗也在增大,所以总的 亦上升,并在tt1时达到极大值;,在t1tt2的范围内,由于分子热运动的增强妨碍了偶极子沿电场方向的有序排列,极化强度反而随温度的上升而减弱,由于极化损耗的减小超过了电导损耗的增加,所以总的 曲线随t的升高而下降,并在t=t2时达到极小值。,在tt2以后
13、,由于电导损耗随温度急剧上升、极化损耗不断减小而退居次要地位,因而 就随时间t的上升而持续增大。,极性液体介质的 和 与电源角频率 的关系如图所示。,较小时,偶极子的转向极化完全跟得上电场的交变,极化得以充分发展,此时的 最大;但此时偶极子单位时间的转向次数不多,因而极化损耗很小,也小,且主要由电导损耗引起。,如 减至很小,反而又稍有增大,这是因为电容电流减小的结果。随 增大,转向极化逐渐跟不上电场交变,开始下降,但由于转向频率增大仍会使极化损耗增加、增大。一旦大到偶极子完全来不及转向时,值变得最小而趋于某一定值,也变得很小。,3.固体介质损耗,(1)无机绝缘材料:云母、陶瓷、玻璃云母:由电导引起损耗,介质损耗小,耐高温性能好,是理想的电机绝缘材料,但机械性能差;电工陶瓷:既有电导损耗,又有极化损耗;20C和50Hz时 25;玻璃:电导损耗极化损耗,损耗与玻璃成分有关。,非极性有机电介质:只有电子式极化,损耗取决于电导;,极性有机电介质:极化损耗使总损耗较大。,(2)有机绝缘材料,可分为非极性和极性,(本节完),小 结,电介质的极化 电子式极化 离子式极化 偶极子极化 夹层极化 电介质的电导为表征电介质导电性能的主要物理量 电介质的损耗为在电场作用下电介质中的能量损耗,
链接地址:https://www.31ppt.com/p-6172916.html