济大学高等数学第六版第七章第三节齐.ppt
《济大学高等数学第六版第七章第三节齐.ppt》由会员分享,可在线阅读,更多相关《济大学高等数学第六版第七章第三节齐.ppt(25页珍藏版)》请在三一办公上搜索。
1、齐次方程,第三节,一、齐次方程,*二、可化为齐次方程,第七章,(homogeneous equation),一、齐次方程,形如,的方程叫做齐次方程.,令,代入原方程得,两边积分,得,积分后再用,代替 u,便得原方程的通解.,解法:,分离变量:,可分离变量的方程,例1.解微分方程,解:,代入原方程得,分离变量,两边积分,得,故原方程的通解为,(当 C=0 时,y=0 也是方程的解),(C 为任意常数),例2.解微分方程,解:,则有,分离变量,积分得,代回原变量得通解,即,说明:显然 x=0,y=0,y=x 也是原方程的解,但在,(C 为任意常数),求解过程中丢失了.,例 1 求解微分方程,例 2
2、 求解微分方程,例 3 求解微分方程,例 4 求解微分方程,微分方程的解为,解,例 5 求解微分方程,解,微分方程的解为,可得 OMA=OAM=,例3.在制造探照灯反射镜面时,解:设光源在坐标原点,则反射镜面由曲线,绕 x 轴旋转而成.,过曲线上任意点 M(x,y)作切线 M T,由光的反射定律:,入射角=反射角,取x 轴平行于光线反射方向,从而 AO=OM,要求点光源的光线反,射出去有良好的方向性,试求反射镜面的形状.,而 AO,于是得微分方程:,利用曲线的对称性,不妨设 y 0,积分得,故有,得,(抛物线),故反射镜面为旋转抛物面.,于是方程化为,(齐次方程),顶到底的距离为 h,说明:,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学 高等数学 第六 第七 三节
链接地址:https://www.31ppt.com/p-6172266.html