数项级数及其收敛性.ppt
《数项级数及其收敛性.ppt》由会员分享,可在线阅读,更多相关《数项级数及其收敛性.ppt(20页珍藏版)》请在三一办公上搜索。
1、一、数项级数及其收敛性,二、数项级数收敛的必要条件,第8章 级数,8.1数项级数的概念和性质,三、函数项级数基本概念,由于式中的每一项都是常数,,定义 1 设给定一个数列 u1,u2,un,,,称为无穷级数.,其中 u1,u2,叫做该级数的项,,un 称为一般项或通项.,所以又叫数项级数,,简称级数,,一、数项级数及其收敛性,称 u1+u2+un+=为部分和数列,记作Sn.,即,这时也称该级数收敛于 S.,若部分和数列的极限不存在,,发散.,例 2 试讨论等比级数,a+ar+ar2+arn-1+(a 0),的收敛性.,当 r 1 时,所给级数的部分和为,由定义 2 知,,该等比级数收敛,,即,
2、所以这时该等比级数发散.,当 r=1 时,,因此该等比级数发散.,部分和数列极限不存在,,故该等比级数发散.,当 n 为奇数,,当 n 为偶数,,试证明其发散.,由此知 f(x)为增函数.,相加得,解 注意到,因此,,所以该级数的和为,即,就有,于是,因此这时必有,这就是级数收敛的必要条件.,二、数项级数收敛的必要条件,事实上,,定理,则,例 5 试证明级数,证,例 6 试讨论级数,解 注意到级数,所以级数发散.,三、函数项级数基本概念,则称点 x0 为函数项级数的一个收敛点.,称为函数项级数,,在函数项级数 中,若令 x 取定义域中某一确定值 x0,,则得到一个数项级数,若上述数项级数收敛,
3、,反之,若上述数项级数发散,则称点 x0 为函数项级数 的发散点.,上述级数的和 S 也随之变动,,称为函数项级数的收敛域.,收敛点的全体构成的集合,,若 x0 是收敛域内的一个值,因此必有一个和 S(x0)与之对应,,即,当 x0 在收敛域内变动时,,就得到一个定义在收敛域上的函数 S(x),,即,如果我们仿照数项级数的情形,将函数项级数 的前n 项和记为 Sn(x),且称为部分和函数,,这个函数 S(x)就称为函数项级数的和函数.,那么在函数项级数的收敛域内有,则在收敛域内同样有,解 因为所给级数的部分和函数,所以,它在区间(-1,1)内收敛,,即收敛域为(-1,1).,且所给级数的和函数为,例 1 试讨论,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 级数 及其 收敛性
链接地址:https://www.31ppt.com/p-6167113.html