微波技术与天线第5章.ppt
《微波技术与天线第5章.ppt》由会员分享,可在线阅读,更多相关《微波技术与天线第5章.ppt(121页珍藏版)》请在三一办公上搜索。
1、5.1 连接匹配元件5.2 功率分配元器件5.3 微波谐振器件 5.4 微波铁氧体器件,第5章 微波元器件,返回主目录,第5章微波元器件,无论在哪个频段工作的电子设备,都需要各种功能的元器件,既有如电容、电感、电阻、滤波器、分配器、谐振回路等无源元器件,以实现信号匹配、分配、滤波等;又有晶体管等有源元器件,以实现信号产生、放大、调制、变频等。微波系统也不例外地有各种无源、有源元器件,它们的功能是对微波信号进行必要的处理或变换,它们是微波系统的重要组成部分。微波元器件按其变换性质可分为线性互易元器件、线性非互易元器件以及非线性元器件三大类。,线性互易元器件只对微波信号进行线性变换而不改变频率特性
2、,并满足互易定理,它主要包括各种微波连接匹配元件、功率分配元器件、微波滤波器件及微波谐振器件等;线性非互易元器件主要是指铁氧体器件,它的散射矩阵不对称,但仍工作在线性区域,主要包括隔离器、环行器等;非线性元器件能引起频率的改变,从而实现放大、调制、变频等,主要包括微波电子管、微波晶体管、微波固态谐振器、微波场效应管及微波电真空器件等。微波元器件品种繁多,而且随着技术的进步不断出现新的元器件,因此不能一一列举,本章从工程应用的角度出发,重点介绍具有代表性的几组微波无源元器件,主要有:连接匹配元件、功率分配元器件、微波谐振元件和微波铁氧体器件。,5.1 连接匹配元件,微波连接匹配元件包括终端负载元
3、件、微波连接元件以及阻抗匹配元器件三大类。终端负载元件是连接在传输系统终端实现终端短路、匹配或标准失配等功能的元件;微波连接元件用以将作用不同的两个微波系统按一定要求连接起来,主要包括波导接头、衰减器、相移器及转换接头等;阻抗匹配元器件是用于调整传输系统与终端之间阻抗匹配的器件,主要包括螺钉调配器、多阶梯阻抗变换器及渐变型变换器等。下面分别介绍这些元器件。1.终端负载元件 终端负载元件是典型的一端口互易元件,主要包括短路负载、匹配负载和失配负载。,(1)短路负载 短路负载是实现微波系统短路的器件,对金属波导最方便的短路负载是在波导终端接上一块金属片。但在实际微波系统中往往需要改变终端短路面的位
4、置,即需要一种可移动的短路面,这就是短路活塞。短路活塞可分为接触式短路活塞和扼流式短路活塞两种,前者已不太常用,下面介绍一下扼流式短路活塞。应用于同轴线和波导的扼流式短路活塞如图 5-1(a)、(b)所示,它们的有效短路面不在活塞和系统内壁直接接触处,而向波源方向移动g/2的距离。,这种结构是由两段不同等效特性阻抗的g/4变换段构成,其工作原理可用如图 5-1(c)所示的等效电路来表示,其中cd段相当于g/4终端短路的传输线,bc段相当于g/4终端开路的传输线,两段传输线之间串有电阻Rk,它是接触电阻,由等效电路不难证明ab面上的输入阻抗为:Zab=0,即ab面上等效为短路,于是当活塞移动时实
5、现了短路面的移动。扼流短路活塞的优点是损耗小,而且驻波比可以大于100,但这种活塞频带较窄,一般只有10%15%的带宽。如图 5-1(d)所示的是同轴S型扼流短路活塞,它具有宽带特性。,图 5 1 扼流短路活塞及其等效电路,(2)匹配负载 匹配负载是一种几乎能全部吸收输入功率的单端口元件。对波导来说,一般在一段终端短路的波导内放置一块或几块劈形吸收片,用以实现小功率匹配负载,吸收片通常由介质片(如陶瓷、胶木片等)涂以金属碎末或炭木制成。当吸收片平行地放置在波导中电场最强处,在电场作用下吸收片强烈吸收微波能量,使其反射变小。劈尖的长度越长吸收效果越好,匹配性能越好,劈尖长度一般取g/2的整数倍。
6、如图 5-2(a)所示;当功率较大时可以在短路波导内放置锲形吸收体,或在波导外侧加装散热片以利于散热,如图 5-2(b)、(c)所示;当功率很大时,还可采用水负载,如图 5-2(d)所示,由流动的水将热量带走。,图 5 2 各种匹配负载,同轴线匹配负载是由在同轴线内外导体间放置的圆锥形或阶梯形吸收体而构成的,如图 5-2(e)、(f)所示。微带匹配负载一般用半圆形的电阻作为吸收体,如图 5-2(g)所示,这种负载不仅频带宽,而且功率容量大。(3)失配负载 失配负载既吸收一部分微波功率又反射一部分微波功率,而且一般制成一定大小驻波的标准失配负载,主要用于微波测量。失配负载和匹配负载的制作相似,只
7、是尺寸略微改变了一下,使之和原传输系统失配。比如波导失配负载,就是将匹配负载的波导窄边b制作成与标准波导窄边b0不一样,使之有一定的反射。设驻波比为,则有,例如:3 cm的波段标准波导BJ-100的窄边为10.16 mm,若要求驻波比为1.1和1.2,则失配负载的窄边分别为9.236 mm和8.407 mm。2.微波连接元件 微波连接元件是二端口互易元件,主要包括:波导接头、衰减器、相移器、转换接头。(1)波导接头 波导管一般采用法兰盘连接,可分为平法兰接头和扼流法兰接头,分别如图 5-3(a)、(b)所示。平法兰接头的特点是:加工方便,体积小,频带宽,其驻波比可以做到1.002以下,但要求接
8、触表面光洁度较高。,图 5 3 波导法兰接头,扼流法兰接头由一个刻有扼流槽的法兰和一个平法兰对接而成,扼流法兰接头的特点是:功率容量大,接触表面光洁度要求不高,但工作频带较窄,驻波比的典型值是1.02。因此平接头常用低功率、宽频带场合,而扼流接头一般用于高功率、窄频带场合。波导连接头除了法兰接头之外,还有各种扭转和弯曲元件(如图 5-4 所示)以满足不同的需要。当需要改变电磁波的极化方向而不改变其传输方向时,用波导扭转元件;当需要改变电磁波的方向时,可用波导弯曲。波导弯曲可分为E面弯曲和H面弯曲。为了使反射最小,扭转长度应为(2n+1)g/4,E面波导弯曲的曲率半径应满足R1.5b,H面弯曲的
9、曲率半径应满足R1.5a。,图 5 4 波导扭转与弯曲元件,(2)衰减元件和相移元件 衰减元件和相移元件用来改变导行系统中电磁波的幅度和相位。对于理想的衰减器,其散射矩阵应为 S=而理想相移元件的散射矩阵应为 S=,衰减器的种类很多,最常用的是吸收式衰减器,它是在一段矩形波导中平行于电场方向放置吸收片而构成,有固定式和可变式两种,分别如图 5-5(a)、(b)所示。,图 5 5 吸收式衰减器,收片由胶木板表面涂覆石墨或在玻璃片上蒸发一层厚的电阻膜组成,一般两端为尖劈形,以减小反射。由矩形波导TE10模的电场分布可知,波导宽边中心位置电场最强,逐渐向两边减小到零,因此,当吸收片沿波导横向移动时,
10、就可改变其衰减量。将衰减器的吸收片换成介电常数r1的无耗介质片时,就构成了移相器,这是因为电磁波通过一段长波为l的无耗传输系统后相位变化为,其中g为波导波长,在波导中改变介质片位置,会改变波导波长,从而实现相位的改变。(3)转换接头,微波从一种传输系统过渡到另一种传输系统时,需要用转换器,第2章讨论的同轴波导激励器和方圆波导转换器等传输系统中都有转换器。在这一类转换器的设计中,一方面要保证形状转换时阻抗的匹配,以保证信号有效传送;另一方面要保证工作模式的转换。另一类转换器是极化转换器,由于在雷达通信和电子干扰中经常用到圆极化波,而微波传输系统往往是线极化的,为此需要进行极化转换,这就需要极化转
11、换器。由电磁场理论可知,一个圆极化波可以分解为在空间互相垂直、相位相差90而幅度相等的两个线极化波;另一方面,一个线极化波也可以分解为在空间互相垂直、大小相等、相位相同的两个线极化波,只要设法将其中一个分量产生附加90相移,再合成起来便是一个圆极化波了。,常用的线-圆极化转换器有两种:多螺钉极化转换器和介质极化转换器(如图 5-6)。这两种结构都是慢波结构,其相速要比空心圆波导小。如果变换器输入端输入的是线极化波,其TE11模的电场与慢波结构所在平面成45角,这个线极化分量将分解为垂直和平行于慢波结构所在平面的两个分量Eu和Ev,它们在空间互相垂直,且都是主模TE11,只要螺钉数足够多或介质板
12、足够长,就可以使平行分量产生附加 90 的相位滞后。于是,在极化转换器的输出端两个分量合成的结果便是一个圆极化波。至于是左极化还是右极化,要根据极化转换器输入端的线极化方向与慢波平面之间的夹角确定。,图 5 6 极化转换器,3.阻抗匹配元件 阻抗匹配元件种类很多,它们的作用是消除反射,提高传输效率,改善系统稳定性。这里主要介绍螺钉调配器、阶梯阻抗变换器和渐变型阻抗变换器三种。(1)螺钉调配器 螺钉是低功率微波装置中普遍采用的调谐和匹配元件,它是在波导宽边中央插入可调螺钉作为调配元件,如图 5-7 所示。螺钉深度的不同等效为不同的电抗元件,使用时为了避免波导短路击穿,螺钉都设计成容性,即螺钉旋入
13、波导中的深度应小于3b/4(b为波导窄边尺寸)。由第1章的支节调配原理可知:多个相距一定距离的螺钉可构成螺钉阻抗调配器,不同的是这里支节用容性螺钉来代替。,图 5 7 波导中的螺钉及其等效电路,螺钉调配器可分为单螺钉、双螺钉、三螺钉和四螺钉四种。单螺钉调配器通过调整螺钉的纵向位置和深度来实现匹配,如图 5-8(a)所示;双螺钉调配器是在矩形波导中相距g/8、g/4或3g/8 等距离的两个螺钉构成的,如图 5-8(b)所示。双螺钉调配器有匹配盲区,故有时采用三螺钉调配器。其工作原理在此不再赘述。由于螺钉调配器的螺钉间距与工作波长直接相关,因此螺钉调配器是窄频带的。(2)多阶梯阻抗变换器 在第1章
14、中我们已经知道,用/4阻抗变换器可实现阻抗匹配;但严格来说,只有在特定频率上才满足匹配条件,即/4阻抗变换器的工作频带是很窄的。,图 5 8 螺钉调配器,要使变换器在较宽的工作频带内仍可实现匹配,必须用多阶梯阻抗变换器,图 5-9 所示分别为波导、同轴线、微带的多阶梯阻抗变换器。它们都可等效为如图 5-10 所示的电路。分别为T0,T1,T2,TN共(N+1)个,如果参考面上局部电压反射系数对称选取,即取,0=N1=N-12=N-2,则输入参考面T0上总电压反射系数为,图 5 9 各种多阶梯阻抗变换器,图 5 10 多阶梯阻抗变换器的等效电路,于是反射系数模值为|=|0cosN+1cos(N-
15、2)+|,当0,1,等值给定时,上式右端为余弦函数cos的多项式,满足|=0的cos有很多解,亦即有许多g使|=0。这就是说,在许多工作频率上都能实现阻抗匹配,从而拓宽了频带。显然,阶梯级数越多,频带越宽。,(3)渐变型阻抗变换器 由前面分析可知,只要增加阶梯的级数就可以增加工作带宽,但增加了阶梯级数,变换器的总长度也要增加,尺寸会过大,结构设计就更加困难,因此产生了渐变线代替多阶梯。设渐变线总长度为L,特性阻抗为Z(z),并建立如图 5-11所示坐标,渐变线上任意微分段zz+z,对应的输入阻抗为Zin(z)Zin(z)+Zin(z),由传输线理论得,图 5 11 渐变型阻抗变换器,式中,为渐
16、变线的相移常数。当z0时,tanzz,代入上式可得,忽略高阶无穷小量,并整理可得,若令电压反射系数为(z),则,代入式(5-1-9)并经整理可得关于(z)的非线性方程,当渐变线变化较缓时,近似认为1-2(z)1,则可得关于(z)的线性方程,其通解为,故渐变线输入端反射系数为,这样,当渐变线特性阻抗Z(z)给定后,由式(5-1-14)就可求得渐变线输入端电压反射系数。通常渐变线特性阻抗随距离变化的规律有:指数型、三角函数型及切比雪夫型,下面就来介绍指数型渐变线的特性,其特性阻抗满足,可见当z=时,Z(z)=Z0,而当z=时,Z(z)=Zl,于是有,输入端反射系数为,两边取模得,图 5-12 给出
17、了|in|与L的关系曲线。由图可见,当渐变线长度一定时,|in|随频率的变化而变。越小,L越大,|in|越小;极限情况下0,则|in|0,这说明指数渐变线阻抗变换器工作频带无上限,而频带下限取决于|in|的容许值。,图 5 12|in|随L的变化曲线,5.2 功率分配元器件,在微波系统中,往往需将一路微波功率按比例分成几路,这就是功率分配问题。实现这一功能的元件称为功率分配元器件,主要包括:定向耦合器、功率分配器以及各种微波分支器件。这些元器件一般都是线性多端口互易网络,因此可用微波网络理论进行分析。下面就分别介绍这三类元器件。1.定向耦合器 定向耦合器是一种具有定向传输特性的四端口元件,它是
18、由耦合装置联系在一起的两对传输系统构成的,如图 5-13 所示。图中“、”是一条传输系统,称为主线;“、”为另一条传输系统,称为副线。耦合装置的耦合方式有许多种,一般有孔、分支线、耦合线等,形成不同的定向耦合器。本节首先介绍定向耦合器的性能指标,然后介绍波导双孔定向耦合器、双分支定向耦合器和平行耦合微带定向耦合器。1)定向耦合器的性能指标 定向耦合器是四端口网络,端口“”为输入端,端口“”为直通输出端,端口“”为耦合输出端,端口“”为隔离端,并设其散射矩阵为S。描述定向耦合器的性能指标有:耦合度、隔离度、定向度、输入驻波比和工作带宽。下面分别加以介绍。,图5-13 定向耦合器的原理图,(2)隔
19、离度 输入端“”的输入功率P1和隔离端“”的输出功率P4之比定义为隔离度,记作I。,(3)定向度 耦合端“”的输出功率P3与隔离端“”的输出功率P4之比定义为定向度,记作D。,(4)输入驻波比 端口“、”都接匹配负载时的输入端口“”的驻波比定义为输入驻波比,记作。,(5)工作带宽 工作带宽是指定向耦合器的上述C、I、D、等参数均满足要求时的工作频率范围。2)波导双孔定向耦合器 波导双孔定向耦合器是最简单的波导定向耦合器,主、副波导通过其公共窄壁上两个相距d=(2n+1)g0/4 的小孔实现耦合。,其中,g0是中心频率所对应的波导波长,n为正整数,一般取n=0。耦合孔一般是圆形,也可以是其它形状
20、。定向耦合器的结构如图 5-14(a)所示,下面简单介绍其工作原理。根据耦合器的耦合机理,画出如图 5-14(b)所示的原理图。设端口“”入射TE10波(u+1=1),第一个小孔耦合到副波导中的归一化出射波为u-41=q和u-31=q,q为小孔耦合系数。假设小孔很小,到达第二个小孔的电磁波能量不变,只是引起相位差(d),第二个小孔处耦合到副波导处的归一化出射波分别为u-42=qe-jd和 u-32=qe-jd,在副波导输出端口“”合成的归一化出射波为,5-14 波导双孔定向耦合器,u-3=u-31e-jd+u-32=2qe-jd,副波导输出端口“”合成的归一化出射波为 u-4=u-41+u-4
21、2e-jd=q(1+e-j2d)=2qcosde-jd,由此可得波导双孔定向耦合器的耦合度为,小圆孔耦合的耦合系数为,式中,a、b分别为矩形波导的宽边和窄边;r为小孔的半径;是TE10模的相移常数。而波导双孔定向耦合器的定向度为,当工作在中心频率时,d=/2,此时D;当偏离中心频率时,secd具有一定的数值,此时D不再为无穷大。实际上双孔耦合器即使在中心频率上,其定向性也不是无穷大,而只能在30dB左右。由式(5-2-9)可见,这种定向耦合器是窄带的。总之,波导双孔定向耦合器是依靠波的相互干涉而实现主波导的定向输出,在耦合口上同相叠加,在隔离口上反相抵消。为了增加定向耦合器的耦合度,拓宽工作频
22、带,可采用多孔定向耦合器,关于这方面的知识,读者可参阅有关文献。,3)双分支定向耦合器 双分支定向耦合器由主线、副线和两条分支线组成,其中分支线的长度和间距均为中心波长的1/4,如图 5-15 所示。设主线入口线“”的特性阻抗为Z1=Z0,主线出口线“”的特性阻抗为Z2=Z0k(k为阻抗变换比),副线隔离端“”的特性阻抗为Z4=Z0,副线耦合端“”的特性阻抗为Z3=Z0k,平行连接线的特性阻抗为Z0p,两个分支线特性阻抗分别为Zt1和Zt2。下面来讨论双分支定向耦合器的工作原理。假设输入电压信号从端口“”经A点输入,则到达D点的信号有两路,一路是由分支线直达,其波行程为g/4,另一路由ABCD
23、,波行程为3g/4;故两条路径到达的波行程差为g/2,相应的相位差为,即相位相反。,图5-15 双分支定向耦合器,因此若选择合适的特性阻抗,使到达的两路信号的振幅相等,则端口“”处的两路信号相互抵消,从而实现隔离。同样由AC的两路信号为同相信号,故在端口“”有耦合输出信号,即端口“”为耦合端。耦合端输出信号的大小同样取决于各线的特性阻抗。下面给出微带双分支定向耦合器的设计公式。设耦合端“”的反射波电压为|U3r|,则该耦合器的耦合度为各线的特性阻抗与|U3r|的关系式为,可见,只要给出要求的耦合度C及阻抗变换比k,即可由式(5-2-10)算得|U3r|,再由式(5-2-11)算得各线特性阻抗,
24、从而可设计出相应的定向耦合器。对于耦合度为3dB、阻抗变换比k=1的特殊定向耦合器,称为3dB定向耦合器,它通常用在平衡混频电路中。此时,此时散射矩阵为,分支线定向耦合器的带宽受g/4的限制,一般可做到10%20%,若要求频带更宽,可采用多节分支耦合器。4)平行耦合微带定向耦合器 平行耦合微带定向耦合器是一种反向定向耦合器,其耦合输出端与主输入端在同一侧面,如图 5-16 所示,端口“”为输入口,端口“”为直通口,端口“”为耦合口,端口“”为隔离口。下面简单分析一下平行耦合微带定向耦合器的工作原理。设平行耦合微带线的奇、偶模特性阻抗分别为Z0o和Z0e,令,图 5 16 平行耦合微带定向耦合器
25、,其中,Z0为匹配负载阻抗,K为电压耦合系数。设各端口均接阻抗为Z0的负载,如图 5-16 所示,根据奇偶模分析,则可等效为图 5-17。端口“”处输入阻抗为,下面来证明端口“”是匹配的。由图 5-17 知,端口“”处的奇偶模输入阻抗为,图5-17平行耦合微带定向耦合器奇偶模等效电路,将式(5-2-14)代入上式(5-2-16)得,可见,ZoinZein=Z0eZ0o=Z20。由奇偶模等效电路得端口“”的奇偶模电压和电流分别为,代入式(5-2-15)并利用式(5-2-17)则有,可见端口“”是匹配的,所以加上的电压U0,即为入射波电压,由对称性可知其余端口也是匹配的。由分压公式可得端口“”的合
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微波 技术 天线
链接地址:https://www.31ppt.com/p-6161645.html