带电粒子在复合场中运动的轨迹欣赏.ppt
《带电粒子在复合场中运动的轨迹欣赏.ppt》由会员分享,可在线阅读,更多相关《带电粒子在复合场中运动的轨迹欣赏.ppt(36页珍藏版)》请在三一办公上搜索。
1、带电粒子在复合场中运动的轨迹欣赏,带电粒子在复合场中的运动是历届高考的压轴题,所以研究带电粒子在复合场中运动的求解方法,欣赏带电粒子在复合场中运动的轨迹,可以激励学生在探究中学会欣赏,在欣赏中促进提高。使学生在享受快乐和欣赏美丽的过程中实现人生的目标。,1一朵梅花例1如图所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。,一质量为、带电量为q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。如果该粒子经
2、过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中),审题:带电粒子从S点出发,在两筒之间的电场作用下加速,沿径向穿过狭缝a而进入磁场区,在洛伦兹力作用下做匀速圆周运动。粒子再回到S点的条件是能沿径向穿过狭缝d只要穿过了d,粒子就会在电场力作用下先减速,再反向加速,经d重新进入磁场区,然后粒子以同样方式经过Cb,再回到S点。,解析:如图所示,设粒子进入磁场区的速度大小为V,根据动能定理,有设粒子做匀速圆周运动的半径为R,由洛伦兹力公式和牛顿第二定律,有:由上面分析可知,要回到S点,粒子从a到d必经过4圆周,所以半径R必定等于筒的外半径r,即R=r
3、由以上各式解得:,感受美:该粒子运动的轨迹构成了一朵“四只花瓣”的鲜艳的油菜花(图3)。拓展1:该圆筒上平行于轴线均匀分布的若是“六条 狭缝”,当电压时,粒子经过一段运动后也能回到原出发点。感受美:该运动轨迹构成了“六只花瓣”的怒放的梅花(图4)。,图4,图3,。感受美:粒子的运动轨迹构成了一朵“n只花瓣”盛开的鲜花。拓展3:若圆筒上只在a处有平行于轴线的狭缝,并且粒子与圆筒外壁发生了n次无能量损失和电量损失的碰撞后恰能回到原出发点,则加速电压,并且粒子运动的半径,拓展2:该圆筒上平行于轴线均匀分布的若是“n条狭缝”,当电压时,粒子经过一段运动后也能回到原出发点,并且粒子做匀速圆周运动的半径,
4、图5,。感受美:该运动轨迹也构成了一朵“n只花瓣”盛开的鲜花(图5为五次碰撞的情形)。,2一座“拱桥”例2如图所示,在x轴上方有垂直于xy平面的匀强磁场,磁感应强度为B,在x轴下方有沿y轴负方向的匀强电场,场强为E,一质量为m,电量为q的粒子从坐标原点O沿着y轴正方向射出,射出之后,第三次到达x轴时,它与O点的距离为L,求此时粒子射出时的速度和运动的总路程(重力不记),解析:画出粒子运动轨迹如图所示,形成“拱桥”图形。由题知粒子轨道半径 所以由牛顿定律知粒子运动速率为 对粒子进入电场后沿y轴负方向做减速运动的最大路程y由动能定理知:得所以粒子运动的总路程为,3、一个电风扇例3、据有关资料介绍,
5、受控热核聚变反应装置中有极高的温度,因而带电粒子将没有通常意义上的容器可装,而是由磁场约束带电粒子运动将其束缚在某个区域内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为,外半径为R2=1.0m,区域内有垂直纸面向里的匀强磁场,已知磁感应强度B=1.0 T,被束缚粒子的荷质比为,(1)若中空区域中的带电粒子沿环的半径方向射入磁场,求带电粒子不能穿越磁场外边界的最大速度v0.(2)若中空区域中的带电粒子以(1)中的最大速度v0沿圆环半径方向射入磁场,求带电粒子从进入磁场开始到第一次回到该点所需要的时间t。,解析:设粒子在磁场中做圆周运动的最大半径为r,则轨迹如图,由几
6、何关系得则,故带电粒子进入磁场绕圆O转过3600(1800一600)=2400又回到中空部分粒子的运动轨迹如图所示,故粒子从P点进入磁场到第一次回到P点时,粒子在磁场中运动时间为粒子在中空部分运动时间为 粒子运动的总时间为,=5.7410-7s。,图15,4、一朵葵花 例4据有关资料介绍,受控热核聚变反应装置中有级高的温度,因而带电粒子将没有通常意义上的容器可装,托卡马克装置是一种利用磁约束来实现受控核聚变的环形容器,由磁场将高温、高密等离子体约束在有限的范围内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为R1=a,外半径为R2=(22-1)a,环形区域内有垂直纸
7、面向外的匀强磁场,磁感应强度为B。,被磁场围住的中心区域为反应区,反应区内质量为m,电量为q的带电粒子,若带电粒子由反应区沿各个不同射入磁场区域,不计带电粒子重力和运动过程中的相互作用,则;1、要求所有带电粒子均不能穿过磁场外界,允许带电粒子速度的最大值m多大?2、若一带电粒子以上述最大速度从边界上某点沿圆环半径方向垂直射入磁场,求带电粒子从进入磁场开始到第一次回到出发点所用的时间t.,解:(1)由圆周切线方向进入磁场的粒子最易穿越磁场,临界时有 如图,由 得(2)则 即,每次进入磁场转过圆心角为225运动时间为在反应区内运动一次总时间为,5、一枚铜钱例5、如图所示为圆形区域的匀强磁场,磁感应
8、强度为B、方向垂直纸面向里,边界跟y轴相切于坐标原点O。O点处有一放射源,沿纸面向各个方向射出速率均为v的某种带电粒子,带电粒子在磁场中做圆周运动的半经是圆形磁场区域半径的两倍。已知该带电粒子的质量为m、电荷量为q,不考虑带电粒子的重力。1、推导带电粒子在磁场空间作圆周运动的轨道半径;2、求带电粒子通过磁场空间的最大偏角;3、沿磁场边界放置绝缘弹性挡板,使粒子与挡板碰撞后以原速率弹回,且其电荷量保持不变。若从O点沿x轴正方向射入磁场的粒子速度的已减小为v2,求该粒子第一次回到O点经历的时间。,解:(1)带电粒子在磁场后,受洛仑磁力作用,由牛顿第二定律得;(2)设粒子飞出和进入磁场的速度方向夹角
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 带电 粒子 复合 运动 轨迹 欣赏
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-6159606.html