工业控制网络技术基础.ppt
《工业控制网络技术基础.ppt》由会员分享,可在线阅读,更多相关《工业控制网络技术基础.ppt(110页珍藏版)》请在三一办公上搜索。
1、第二章 工业控制网络技术基础,2.1 局域网技术,1、局域网概述定义:局域网(LAN)通常被认为是由一组在物理地址上彼此相隔不远的计算机及其设备按照一定的连接方式组织起来的、以实现用户间相互通信和共享诸如打印机和存储设备等资源的网络系统。主要用途:1)共享功能 共享的内容软硬件都可包括2)客户/服务器计算模式3)局域通信功能4)为接入Internet等广域网做准备,(1)主要特点:1)一般特点:较小的物理范围以微机为主要联网对象通常属于某个部门和单位价格低廉2)技术特点:具有更高的传输速率(101000Mbit/s)通常多个站共享一个传输介质误码率低具有较低的时延具有高可靠性和安全性、易于扩缩
2、和管理,(2)基本组成LAN由五个基本部件构成 计算机(特别是PC)传输介质 网络适配器(网卡)网络连接设备 网络操作系统,2、局域网拓扑结构,计算机网络的组成元素可以分为两大类,即网络节点和通信链路。网络中节点的互连模式叫网络拓扑结构。物理拓扑指连接网络设备的物理线缆的铺设形式拓扑结构通常是指物理拓扑结构逻辑拓扑数据流在物理线缆中传输的形式物理拓扑可能与逻辑拓扑形状不同,局域网常见的拓扑结构总线、树形、环形、星形(1)星形拓扑结构所有的计算机连到一个中心节点上,中心节点的设备通常由主机或集线器担当。,星形拓扑的特点物理结构的特点所有站点直接与中央节点相连各站点之间无直接连线 站点之间通信必须
3、通过中央节点转发逻辑结构的特点中央节点的处理能力决定了网络的逻辑拓扑如为HUB,网络的逻辑拓扑为总线型如为交换机,则网络的逻辑拓扑为星型,中央节点为HUB的Ethernet,逻辑上等效于,1、2 发送3、6接收,双绞线介质,收发各用一对线,平衡驱动,站点与HUB之间采用直连电缆,HUB接收每个站点信息并向其他站转发,数据充满整个网络,仍为逻辑上的总线,数据通信具有总线型网络的特点,(冲突、竞争信道,收、发规则,共享总线速率等),优点:查找故障方便,便于维护和管理个别站点的故障对网络无影响站点进出很自由介质访问方法简单缺点:对中央节点的可靠性和冗余度要求很高,(2)环形拓扑结构,由连接成封闭回路
4、的网络节点组成,每一节点与它左右相邻的节点相连接并最终形成一个“环状”结构。连接特点:通过转发器与单向链路连成环状各站点通过转发器接入环中逻辑拓扑:环形,通信特点:数据单向传输,同时只能有一个站点发送广播通信方式,数据绕环一周,所有站点都能收到数据传输中需要指定源、目的地址需要某种机制决定谁发送(令牌)需要对发送规则进行监控和管理(令牌管理)需对数据进行插入、接收、删除处理(避免循环)数据在每个站点重新转发,信号强度大,环网转发器功能,对数据波形进行整形、放大对途经的数据进行监听并沿环向下转发(延时理想值为1位)对出环或故障的站点进行旁路,维持环的正常工作,环网的数据传输,准备工作数据成帧得到
5、令牌(发送权)传输过程帧途经的转发器判别地址若地址相符:将数据传向所连站点,同时修改有关位(接收信号),并向下转发;若地址不符:则只将数据向下转发发送站边发边监听上行链路数据数据帧绕环一周回到本地:站点吸收本数据帧,同时产生新令牌当令牌在环中传输时:便开始新一轮的传输,优点:高速运行避免碰撞,结构简单潜在问题:任一转发器或任一段链路故障都将导致网络瘫痪故障查找困难,需要漫游整个网络才能定位故障点新增站点困难,需要新增转发器可能还要重新拉线可靠性要求和转发器的积累时延限制了环的规模需要站点兼任监控站监测环的状态,(3)总线型拓扑结构,一种使用同一介质或电缆连接所有端用户的方式,即连接端用户的物理
6、介质由所有设备共享。,总线拓扑,总线型拓扑结构特点,连接特点:所有站点通过搭接头直接与总线相连逻辑拓扑:总线型通信面临的问题:任一站点发送,其他所有站点都能收到;数据传输无方向性需要指明由谁发送(源地址),发给谁(目标地址)多个站点同时发送时,会发生冲突。同时只能一个站点发送一个站点连续发送时间过长,其他站点将不能发送(公平性?)站点只能采用半双工方式,全双工(Full Duplex)是指在发送数据的同时也能够接收数据,两者同步进行。这好像我们平时打电话一样,说话的同时也能够听到对方的声音。目前的网卡一般都支持全双工。半双工(Half Duplex),所谓半双工就是指一个时间段内只有一个动作发
7、生。举个简单例子,一条窄窄的马路,同时只能有一辆车通过,当目前有两辆车对开,这种情况下就只能一辆先过,等到头后另一辆再开,这个例子就形象的说明了半双工的原理。早期的对讲机、以及早期集线器等设备都是基于半双工的产品。随着技术的不断进步,半双工会逐渐退出历史舞台。单工通信是指通信线路上的数据按单一方向传送。,总线型结构的数据传输,A站,B站,C站,站点C发数据给站点A接收,传输准备,站点C将数据组成帧格式,头部含源(C)、宿地址(A),站点C传输之前需先竞争到信道,传输过程,C将帧发出,传到B站,地址不符丢弃,传到A站,地址相符接收,2.2 局域网协议,分层结构的相关术语、概念层与对等层 层:一种
8、逻辑划分,功能被明确定义对等层:也叫同层,指互连系统中相同的层实体与对等实体 实体:每一层活跃的元素可收发信息的东西(硬、软件均可,如网卡、应用程序等)是实现层功能的主体每一个层可有多个实体,对等实体,对等实体一定成对出现在互连系统的同层中对等实体一定执行相同的协议,能相互通信对等实体之间通信一定是透明的(报文格式、大小一样)不同层的实体不能通信,服务、接口、协议,(n)PDU,n协议,实体,SAP,向上层提供的服务,服务:下层实体通过层间接口为上层实体提供的通信功能,服务访问点:SAP(Service Access Point),相邻层之间交换数据的地方,也叫层间接口,每个SAP具有唯一的标
9、识地址,每个实体提供多个SAP,供不同的上层协议使用,每个SAP由一个实体提供,一个上层协议可使用多个SAP,协议:对等实体之间通信时共同遵守的规约。协议具有三要素 语法:信息的格式(由哪几部分组成)语义:信息的含义及控制信息(各部分的具体意义)时序:信息交换的步骤与顺序等PDU(Protocal Data Unit)对等实体间交换的数据单元(由数据头部和上层数据组成),进一步理解协议与服务,服务涉及本地系统上下层实体之间的通信(垂直方向)协议涉及互连系统同层实体之间的通信(水平方向)协议独立于服务(可用不同的协议提供同一服务)协议是提供服务的基础,是完成层功能的基础,OSI参考模型(OSi/
10、RM),OSI:Open System Interconnection Reference Model,开放系统互连参考模型OSI模型由ISO提出ISO:International Standard Organization制定OSI标准的目的:使不同的计算机网络能够互连要求各大公司按照OSI标准制造计算机网络,OSI七层标准模型,OSI模型各层功能,物理层物理层是OSI的第一层,它虽然处于最底层,却是整个开放系统的基础。物理层为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。媒体和互连设备物理层的媒体包括架空明线、平衡电缆、光纤、无线信道等。通信用的互连设备指DTE和DC
11、E间的互连设备。DTE即数据终端设备,又称物理设备,如计算机、终端等都包括在内。而DCE则是数据通信设备或电路连接设备,如调制解调器等。,数据传输通常是经过DTEDCE,再经过DCEDTE的路径。互连设备指将DTE、DCE连接起来的装置,如各种插头、插座。LAN中的各种粗、细同轴电缆、T型接、插头,接收器,发送器,中继器等都属物理层的媒体和连接器。物理层的主要功能 为数据端设备提供传送数据的通路。数据通路可以是一个物理媒体,也可以是多个物理媒体连接而成。一次完整的数据传输,包括激活物理连接,传送数据,终止物理连接。所谓激活,就是不管有多少物理媒体参与,都要在通信的两个数据终端设备间连接起来,形
12、成一条通路。,传输数据。物理层要形成适合数据传输需要的实体,为数据传送服务。一是要保证数据能在其上正确通过,二是要提供足够的带宽(带宽是指每秒钟内能通过的比特(BIT)数),以减少信道上的拥塞。传输数据的方式能满足点到点,一点到多点,串行或并行,半双工或全双工,同步或异步传输的需要。完成物理层的一些管理工作。物理层协议规定了为正确传送二进制位信号进行建立、维持和释放物理信道提供机械、电气、功能和规程方面的手段。物理层典型协议是国际电子工业协会制定的EIA RS-232C。,数据链路层,数据链路可以粗略地理解为数据通道。物理层要为终端设备间的数据通信提供传输媒体及其连接。媒体是长期的,连接是有生
13、存期的。在连接生存期内,收发两端可以进行不等的一次或多次数据通信。每次通信都要经过建立通信联络和拆除通信联络两过程。这种建立起来的数据收发关系就叫作数据链路。而在物理媒体上传输的数据难免受到各种不可靠因素的影响而产生差错,为了弥补物理层上的不足,为上层提供无差错的数据传输,就要能对数据进行检错和纠错。数据链路的建立,拆除,对数据的检错,纠错是数据链路层的基本任务。,数据链路层的主要功能数据链路层的功能是为网络层提供连接服务,并在数据链路连接上传送帧,帧是数据链路层数据的传输单位。一般为网络层提供3种服务:无确认的无连接服务。特点:发送前不建立数据链路连接,需要通信时,发送方的数据链路层即可直接
14、发送任意长的信息,传输时接收方也不应答,出错和数据丢失时也不做处理。适用场合:线路误码率很低或对传送实时性要求很高的场合。有确认的无连接服务。特点:发送前不建立数据链路连接而直接发送数据,接收数据链路层能接收帧,并经校验,如果正确,则返回应答帧;不能接收或接收后校验不正确,则返回否定应答,发送端要么重发,要么暂不发数据。适用场合:不可靠信道的信号传输。,有确认的面向连接的服务。特点:进行一次数据传送分为3个阶段:数据链路建立、数据帧传送和数据链路的释放。面向连接的服务在数据传送阶段对每个帧都要确认,发送方收到确认后才能发送下一个帧,服务质量好。链路层应具备如下功能:链路连接的建立,拆除,分离。
15、帧定界和帧同步。链路层的数据传输单元是帧,协议不同,帧的长短和界面也有差别,但无论如何必须对帧进行定界。顺序控制,指对帧的收发顺序的控制。链路标识,流量控制。通过引入某种反馈机制完成。,差错检测和恢复。差错检测多用方阵码校验和循环码校验来检测信道上数据的误码,而帧丢失等用序号检测。各种错误的恢复则常靠反馈重发技术来完成。数据链路层的典型协议是OSI标准协议集中的高级数据链路控制(HDLC)协议。OSI参考模型的数据链路层在IEEE802局域网标准中被分为介质访问控制(MAC)子层与逻辑链路控制(LLC)子层。MAC子层负责解决共享信道的介质访问控制,LLC子层完成通常意义下的数据链路层功能。本
16、层指定拓扑结构并提供硬件寻址。,网络层,数据链路层协议只能解决相邻两个节点间的数据传输问题,不能解决由多条链路组成通路的数据传输问题。而当数据终端增多时,它们之间有中继设备相连。此时会出现一台终端要求不只是与唯一的一台而是能和多台终端通信的情况,这就是产生了把任意两台数据终端设备的数据链接起来的问题,也就是路由或者叫寻径。网络层的任务就是要选择合适的路由,为传输层提供整个网络范围内两个终端用户之间数据传输的通路。,网络层数据的传送单位为报文或报文分组。网络层向上层(传输层)提供的服务有两大类,即面向连接的网络服务(虚电路服务)和无连接的网络服务(数据报服务)。虚电路服务传送方式:建立连接数据传
17、输释放连接。分组沿一条网络连接串行前进,收发顺序一致。差错和流量控制由网络负责。适用范围:定对象、长报文、会话型传输。数据报服务传送方式:数据直接发送无需事先连接,各分组可经由不同的中转路径独立传送。排序由传输层完成,差错控制由主机承担。适用范围:需要将一个分组发送到多个目的地。,网络层应具备以下主要功能:路由选择和中继 激活,终止网络连接 在一条数据链路上复用多条网络连接,多采取分时复用技术 差错检测与恢复 排序,流量控制 服务选择 网络管理,网络层主要解决的是路由选择和流量控制等问题。路由选择路由选择算法:在网络中源节点和目标节点之间找到一条最佳的或合适的路径。可分为静态路由选择算法(预先
18、配置好)和动态路由选择算法(根据实际情况配置)两大类。流量控制流量是指计算机网络中的通信量。网络的吞吐量随输入负载的增大而下降(即拥塞),吞吐量下降至零时网络瘫痪(即死锁)。流量控制的功能就是要防止网络由于过载而引起网络数据吞吐量下降和时延增加、避免死锁、公平地在相互竞争的用户之间分配资源。,传输层,传输层是两台计算机经过网络进行数据通信时,第一个端到端(即进程到进程)的层次,具有缓冲作用。当网络层服务质量不能满足要求时,它将服务加以提高,以满足高层的要求;当网络层服务质量较好时,它只用很少的工作。传输层还可进行复用,即在一个网络连接上创建多个逻辑连接。传输层也称为运输层。传输层只存在于端开放
19、系统中,是介于低3层通信子网系统和高3层之间的一层,是整个协议层次结构的核心。因为它是源端到目的端对数据传送进行控制从低到高的最后一层。,传输层的功能就是在网络层的基础上,完成端到端的差错纠正和流量控制,并实现两个终端系统间传送的分组无丢失、无重复、无差错、分组顺序正确。传输层屏蔽通信子网间的差异,向上层提供标准完善的服务。各种通信子网在性能上存在着很大差异。例如电话交换网,分组交换网,公用数据交换网,局域网等通信子网都可互连,但它们提供的吞吐量,传输速率,数据延迟通信费用各不相同。然而对于会话层来说,却要求有一性能恒定的界面。传输层就承担了这一功能,它采用分流/合流,复用/介复用技术来调节上
20、述通信子网的差异,使会话层感受不到它们的差别。,传输层面对的数据对象已不是网络地址和主机地址,而是和会话层的界面端口。上述功能的最终目的是为会话层提供可靠的,无误的数据传输。传输层端口的概念端口就是传输服务访问点(TSAP)。端口的作用就是让各种应用进程都能将其数据通过端口向下交付给传输层,以及让传输层知道应当将其数据段或者报文中的数据向上通过端口交付给应用层相应的进程。从这个意义上讲,端口是用来标识应用进程。传输层的任务是根据通信子网的特性,最佳的利用网络资源,为两个端系统的会话层之间,提供建立、维护和取消传输连接的功能,负责端到端的可靠数据传输。在这一层,信息传送的协议数据单元称为段或报文
21、。,传输层的服务可分为面向连接和无连接两种,面向连接的传输层协议使用最广泛,一般要经历传输连接建立阶段,数据传送阶段,传输连接释放阶段3个阶段才算完成一个完整的服务过程。而在数据传送阶段又分为一般数据传送和加速数据传送两种。传输层服务分成5种类型,基本可以满足对传送质量,传送速度,传送费用的各种不同需要。,协议等级,传输层服务通过协议体现,因此传输层协议的等级与网络服务质量密切相关。根据差错性质,网络服务按质量可分为以下三种类型:A类服务:低差错率连接,即具有可接受的残留差错率和故障通知率C类服务:高差错率连接,即具有不可接受的残留差错率和故障通知率B类服务:介于A类服务与C类服务之间 差错率
22、的接受与不可接受是取决于用户的。因此,网络服务质量的划分是以用户要求为依据的。OSI根据传输层的功能特点,定义了以下五种协议级别:,0级:简单连接。只建立一个简单的端到端的传输连接,并可分段传输长报文。1级:基本差错恢复级。在网络连接断开、网络连接失败或收到一个未被认可的传输连接数据单元等基本差错时,具有恢复功能。2级:多路复用。允许多条传输共享同一网络连接,并具有相应的流量控制功能。3级:差错恢复和多路复用。是1级和2级协议的综合。4级:差错检测、恢复和多路复用。在3级协议的基础上增加了差错检测功能。,传输层的典型协议是TCP/IP。TCP/IP的传输层同时提供两个不同的协议:传输控制协议T
23、CP和用户数据报协议UDP。TCP 提供面向连接的服务。由于 TCP 要提供可靠的、面向连接的传输服务,因此不可避免地增加了许多的开销。这不仅使协议数据单元的头标增加了更多的域,还要占用许多的处理机资源。UDP提供无连接的服务,在传送数据之前不需要先建立连接。对方的传输层在收到 UDP数据报后,不需要给出任何确认。虽然 UDP 不提供可靠投递,但在某些情况下 UDP 是一种最简单有效的工作方式。例如视频点播等实时应用常使用UDP。,会话层,会话层以下的各层都是面向通信的,而会话层以上的各层是面向应用的,因此可看作是用户与网络的接口。在会话层及以上的高层次中,数据传送的单位不再另外命名,统称为报
24、文。会话层的基本任务是实现两主机之间原始报文的传输,但它不参与具体的传输,它提供包括访问验证和会话管理在内的建立和维护应用之间通信的机制。如服务器验证用户登录便是由会话层完成的。,会话层提供的服务主要为会话连接管理和会话数据交换两大部分,会话连接是建立在传输连接基础上的,会话连接与传输连接有3种对应关系:一个会话连接对应一个传输连接多个会话连接对应一个传输连接一个会话连接对应多个传输连接会话层提供的服务:管理会话:会话层允许信息同时双向传输,或任一时刻只能单向传输。令牌管理(token management):有些协议保证双方不能同时进行同样的操作,这一点很重要。为管理这些活动,会话层提供令牌
25、。令牌可以在会话的双方之间交换,只有持有令牌的一方可以执行某种关键操作。另一种服务是会话同步(synchronization)。会话层使用校验点(同步点)可使通信会话在通信失效时从校验点继续恢复通信。,表示层,与低五层提供透明的数据运输不同,表示层是处理所有与数据表示及运输有关的问题,包括数据的转换、加密和压缩。每台计算机可能有它自己的表示数据的内部方法,例如,码与码,所以需要协定来保证不同的计算机可以彼此理解。开放系统互连环境的应用层负责处理语义,表示层负责处理语法,下面五层负责位信息从源到目的地的有序移动。为使各个系统间交换的信息具有相同的语义,应用层采用了相互承认的抽象语法。抽象语法是对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工业 控制 网络技术 基础
链接地址:https://www.31ppt.com/p-6158915.html